Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Oxidative addition model

Rhodium and iridium have provided the most important examples of oxidative addition and reductive elimination reactions. Rhodium complexes are among the most useful homogeneous catalysts. The more stable iridium complexes have been used to model oxidative addition and reductive elimination. [Pg.460]

Ca.ta.lysis, Iridium compounds do not have industrial appHcations as catalysts. However, these compounds have been studied to model fundamental catalytic steps (174), such as substrate binding of unsaturated molecules and dioxygen oxidative addition of hydrogen, alkyl haHdes, and the carbon—hydrogen bond reductive elimination and important metal-centered transformations such as carbonylation, -elimination, CO reduction, and... [Pg.181]

Because of the expanded scale and need to describe additional physical and chemical processes, the development of acid deposition and regional oxidant models has lagged behind that of urban-scale photochemical models. An additional step up in scale and complexity, the development of analytical models of pollutant dynamics in the stratosphere is also behind that of ground-level oxidant models, in part because of the central role of heterogeneous chemistry in the stratospheric ozone depletion problem. In general, atmospheric Hquid-phase chemistry and especially heterogeneous chemistry are less well understood than gas-phase reactions such as those that dorninate the formation of ozone in urban areas. Development of three-dimensional models that treat both the dynamics and chemistry of the stratosphere in detail is an ongoing research problem. [Pg.387]

In a sense the formation of t) -H2 complexes can be thought of as an intermediate stage in the oxidative addition of H2 to form two M-H bonds and, as such, the complexes might serve as a model for this process and for catalytic hydrogenation reactions by metal hydrides. Indeed, intermediate cases between and... [Pg.47]

The complexes [Cu(NHC)(MeCN)][BF ], NHC = IPr, SIPr, IMes, catalyse the diboration of styrene with (Bcat) in high conversions (5 mol%, THF, rt or reflux). The (BcaO /styrene ratio has also an important effect on chemoselectivity (mono-versus di-substituted borylated species). Use of equimolecular ratios or excess of BCcat) results in the diborylated product, while higher alkene B(cat)j ratios lead selectively to mono-borylated species. Alkynes (phenylacetylene, diphenylacety-lene) are converted selectively (90-95%) to the c/x-di-borylated products under the same conditions. The mechanism of the reaction possibly involves a-bond metathetical reactions, but no oxidative addition at the copper. This mechanistic model was supported by DFT calculations [68]. [Pg.40]

After the precatalyst is completely converted to the active catalyst Xq, three steps are required to form the desired reduction product. The first step is the coordination of dehydroamino acid (A) to the rhodium atom forming adducts (Xi) and (Xi ) through C=C as well as the protecting group carbonyl. The next step is the oxidative addition of hydrogen to form the intermediate (X2). The insertion of solvent (B) is the third step, removing the product (P) from X2 and regenerating Xq. Hence, the establishment of the kinetic model involves these three irreversible steps. [Pg.30]

There are many biomimetic model Co complexes of the cobalamins.1149 The primary criterion for an effective B12 model has been that the complex may be reduced to the monovalent state and undergo facile oxidative addition to generate a stable alkylcobalt(III) complex. The two main classes of B12 model complexes that have been investigated are Co oximes and Schiff base complexes. The former class shares the planar CoN4 array of their biological analogs whereas the majority of effective Schiff base Bi2 model complexes comprise equatorial czj-N202 donor sets. [Pg.103]

The Co complexes of the o-phenylenediamine-linked dioxime Hdmg2Ph bearing a variety of monodentate ligands (halides and pseudo halides) in the axial coordination sites have been synthesized.1176 B12 model complexes [RCo(dmg2Ph)(L)]+ (R = Me, Et, Me2CH, Bz, ch L = py, H-im, or PPh3) were prepared by the oxidative addition reactions of the alkyl halide to the in situ-generated monovalent dibromo complex. [Pg.105]

Analysis of possible structures and reaction pathways in reactions 1-4 led to various model structures for these complexes (9t25). Some of these involved C-H activation of the substituents attached to the unsaturated carbon atoms. To test the validity of these models, two additional types of metal vapor reactions were examined. In one case, reactions with simpler unsubstituted hydrocarbons were examined. In another case, substrates ideally set up for oxidative addition of C-H to the metal center were examined. As described in the following paragraphs, both of these approaches expanded the horizons of organolanthanide chemistry. [Pg.284]

Oxidation state, nickel, 170, 198, 202 Oxidative addition, 11, 20, 21, 293 Oxidative cleavage, polysilane, 153-154 Oxidative coupling, 171-173, 179-182 in C12-oligomers, 173, 188, 207, 209-210 electronic and steric factors, 198, 200 modelling, 176... [Pg.323]

The authors point out that the dependence of the site of electrophilic attack on the ligand trans to the hydride in the model systems may be important with respect to alkane activation. If the information is transferable to Pt-alkyls, protonation at the metal rather than the alkyl should be favored with weak (and hard ) a-donor ligands like Cl- and H20. These are the ligands involved in Shilov chemistry and so by the principle of microscopic reversibility, C-H oxidative addition may be favored over electrophilic activation for these related complexes. [Pg.282]

In a study of the methane complex [(diimine)Pt(CH3)(CH4)]+ (diimine = HN=C(H)-C(H)=NH), relevant to the diimine system experimentally investigated by Tilset et al. (28), theoretical calculations indicate preference for the oxidative addition pathway (30). When one water molecule was included in these calculations, the preference for oxidative addition increased due to the stabilization of Pt(IV) by coordinated water (30). The same preference for oxidative addition was previously calculated for the ethylenediamine (en) system [(en)Pt(CH3)(CH4)]+ (151). This model is relevant for the experimentally investigated tmeda system [(tmeda)Pt(CH3)(solv)]+ discussed above (Scheme 7, B) (27,152). For the bis-formate complex Pt(02CH)2, a a-bond metathesis was assumed and the energies of intermediates and transition states were calculated... [Pg.290]

Contrary to experimental evidence, the CO insertion step is predicted as the rate-determining step of the catalytic cycle at all reported levels of theory. The difference between of the computed results and the experiment has been attributed [17] to effects of solvation. Oxidative addition is the only step that involves an unsaturated reactant. The solvent is supposed to stabilize all transition states (TS) in the same extent, but further stabilize the unsaturated complex, which would increase the activation barrier. When a single ethene molecule was used to model the solvent, the activation barrier of H2 oxidative addition increased [17], to almost the same size as the CO insertion barrier. At this point, it seems that theory has not yet managed to distinguish which is the faster step. [Pg.165]

In 1998, Morokuma and co-workers carried out density functional calculations on the following model reaction, Pd(PH3)2 + C2H2 + (OCH2)2B-SH Pd(PH3)2 + (OCH2)2B-CH=CH-SH, to study the detailed reaction mechanism [24], The theoretical studies suggest that the reaction mechanism involves a metathesis-like process, instead of an oxidative addition, in breaking the B-S bond of the substrate. The reason for not having an... [Pg.209]

The influence of steric effects on the rates of oxidative addition to Rh(I) and migratory CO insertion on Rh(III) was probed in a study of the reactivity of a series of [Rh(CO)(a-diimine)I] complexes with Mel (Scheme 9) [46]. For a-diimine ligands of low steric bulk (e.g. bpy, L1, L4, L5) fast oxidative addition of Mel was observed (103-104 times faster than [Rh(CO)2l2] ) and stable Rh(III) methyl complexes resulted. For more bulky a-diimine ligands (e.g. L2, L3, L6) containing ortho-alkyl groups on the N-aryl substituents, oxidative addition is inhibited but methyl migration is promoted, leading to Rh(III) acetyl products. The results obtained from this model system demonstrate that steric effects can be used to tune the relative rates of two key steps in the carbonylation cycle. [Pg.199]

As a second step in the reaction, following co-ordination, most authors propose an oxidative addition of the C-S fragments to the transition metal, similar to the reaction found for carbon-to-phosphorus bond breaking. Since the C-S bond is rather weak it is easy to break and indeed several model reactions can be found in the literature. [Pg.55]

Advances can be found in references [35-44], A model sequence of reactions for iridium is shown in Figure 2.42. Crucial to most mechanisms is the oxidative addition of the C-S moiety to the metal centre, for which many examples have been reported. The model reaction of 2.42 involves stepwise reactions with hydride and protons and is as yet stoichiometric [45],... [Pg.56]

First we will describe the hydrocyanation of ethene as a model substrate. The catalyst precursor is a nickel(O) tetrakis(phosphite) complex which is protonated to form a nickel(II) hydride. Actually, this is an oxidative addition of HCN to nickel zero. In Figure 11.1 the hydrocyanation mechanism in a simplified form is given the basic steps are the same as for butadiene, the actual substrate, but the complications due to isomer formation are lacking. [Pg.229]

A concerted mechanism has also been discussed [29,30], involving either a 2+2+1 or 3+2 mechanism. To avoid trimolecular reactions this requires an interaction between Rh(I) and silanes prior to the reaction with a ketone. Interaction of silanes not leading to oxidative addition usually requires high-valent metals as we have seen in Chapter 2. The model is shown in Figure 18.16 it proved useful for the explanation of the enantiomers formed in different instances. The formation of a rhodium-carbon bond is included and thus formation of silyl enol ethers remains a viable side-path. [Pg.382]


See other pages where Oxidative addition model is mentioned: [Pg.180]    [Pg.262]    [Pg.282]    [Pg.193]    [Pg.40]    [Pg.74]    [Pg.117]    [Pg.559]    [Pg.677]    [Pg.21]    [Pg.233]    [Pg.241]    [Pg.107]    [Pg.145]    [Pg.514]    [Pg.149]    [Pg.182]    [Pg.852]    [Pg.498]    [Pg.791]    [Pg.288]    [Pg.289]    [Pg.311]    [Pg.1084]    [Pg.528]    [Pg.524]    [Pg.206]    [Pg.204]    [Pg.292]    [Pg.81]   


SEARCH



Additive model

Additives modeling

Additivity model

Oxidation model

© 2024 chempedia.info