Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Modelling lattice models

The first step in quantitative description of pure polyamorphic fluid is a selection of the model that can qualitatively describe a possible multiplicity of critical points in wide range of temperatures and pressures. A great many of explanations of multicriticality in monocomponent fluids (perturbation theory models semiempirical models lattice models, two-state models, field theoretic models, two-order-parameter models, and parametric crossover model has been disseminated after the pioneering work by Hemmer and Stell Here we test more extensively the modified van der Waals equation of state (MVDW) proposed in work and refine this model by introducing instead of the classical van der Waals repulsive term a very accurate hard sphere equation of state over the entire stable and metastable regions... [Pg.218]

Several approaches have been followed to understand the transport phenomena occurring in perfluoropolymeric membranes, and these include irreversible thermodynamics, use of the Nemst-Planck transport equation (Eq.l3), and various descriptions (e.g., free-volume model, lattice model, quasi-crystalline model) coupling the morphological and chemical properties of the membranes. The reader is referred to the references and citations in the reviews [81-87] for more details related to these models. [Pg.328]

There is, of course, a mass of rather direct evidence on orientation at the liquid-vapor interface, much of which is at least implicit in this chapter and in Chapter IV. The methods of statistical mechanics are applicable to the calculation of surface orientation of assymmetric molecules, usually by introducing an angular dependence to the inter-molecular potential function (see Refs. 67, 68, 77 as examples). Widom has applied a mean-held approximation to a lattice model to predict the tendency of AB molecules to adsorb and orient perpendicular to the interface between phases of AA and BB [78]. In the case of water, a molecular dynamics calculation concluded that the surface dipole density corresponded to a tendency for surface-OH groups to point toward the vapor phase [79]. [Pg.65]

In polymer solutions and blends, it becomes of interest to understand how the surface tension depends on the molecular weight (or number of repeat units, IV) of the macromolecule and on the polymer-solvent interactions through the interaction parameter, x- In terms of a Hory lattice model, x is given by the polymer and solvent interactions through... [Pg.69]

Face-centered cubic crystals of rare gases are a useful model system due to the simplicity of their interactions. Lattice sites are occupied by atoms interacting via a simple van der Waals potential with no orientation effects. The principal problem is to calculate the net energy of interaction across a plane, such as the one indicated by the dotted line in Fig. VII-4. In other words, as was the case with diamond, the surface energy at 0 K is essentially the excess potential energy of the molecules near the surface. [Pg.264]

Dynamic models for ionic lattices recognize explicitly the force constants between ions and their polarization. In shell models, the ions are represented as a shell and a core, coupled by a spring (see Refs. 57-59), and parameters are evaluated by matching bulk elastic and dielectric properties. Application of these models to the surface region has allowed calculation of surface vibrational modes [60] and LEED patterns [61-63] (see Section VIII-2). [Pg.268]

The second model is a quantum mechanical one where free electrons are contained in a box whose sides correspond to the surfaces of the metal. The wave functions for the standing waves inside the box yield permissible states essentially independent of the lattice type. The kinetic energy corresponding to the rejected states leads to the surface energy in fair agreement with experimental estimates [86, 87],... [Pg.270]

Small metal clusters are also of interest because of their importance in catalysis. Despite the fact that small clusters should consist of mostly surface atoms, measurement of the photon ionization threshold for Hg clusters suggest that a transition from van der Waals to metallic properties occurs in the range of 20-70 atoms per cluster [88] and near-bulk magnetic properties are expected for Ni, Pd, and Pt clusters of only 13 atoms [89] Theoretical calculations on Sin and other semiconductors predict that the stmcture reflects the bulk lattice for 1000 atoms but the bulk electronic wave functions are not obtained [90]. Bartell and co-workers [91] study beams of molecular clusters with electron dirfraction and molecular dynamics simulations and find new phases not observed in the bulk. Bulk models appear to be valid for their clusters of several thousand atoms (see Section IX-3). [Pg.270]

Various functional forms for / have been proposed either as a result of empirical observation or in terms of specific models. A particularly important example of the latter is that known as the Langmuir adsorption equation [2]. By analogy with the derivation for gas adsorption (see Section XVII-3), the Langmuir model assumes the surface to consist of adsorption sites, each having an area a. All adsorbed species interact only with a site and not with each other, and adsorption is thus limited to a monolayer. Related lattice models reduce to the Langmuir model under these assumptions [3,4]. In the case of adsorption from solution, however, it seems more plausible to consider an alternative phrasing of the model. Adsorption is still limited to a monolayer, but this layer is now regarded as an ideal two-dimensional solution of equal-size solute and solvent molecules of area a. Thus lateral interactions, absent in the site picture, cancel out in the ideal solution however, in the first version is a properly of the solid lattice, while in the second it is a properly of the adsorbed species. Both models attribute differences in adsorption behavior entirely to differences in adsorbate-solid interactions. Both present adsorption as a competition between solute and solvent. [Pg.391]

Of particular interest has been the study of the polymer configurations at the solid-liquid interface. Beginning with lattice theories, early models of polymer adsorption captured most of the features of adsorption such as the loop, train, and tail structures and the influence of the surface interaction parameter (see Refs. 57, 58, 62 for reviews of older theories). These lattice models have been expanded on in recent years using modem computational methods [63,64] and have allowed the calculation of equilibrium partitioning between a poly-... [Pg.399]

Micellar structure has been a subject of much discussion [104]. Early proposals for spherical [159] and lamellar [160] micelles may both have merit. A schematic of a spherical micelle and a unilamellar vesicle is shown in Fig. Xni-11. In addition to the most common spherical micelles, scattering and microscopy experiments have shown the existence of rodlike [161, 162], disklike [163], threadlike [132] and even quadmple-helix [164] structures. Lattice models (see Fig. XIII-12) by Leermakers and Scheutjens have confirmed and characterized the properties of spherical and membrane like micelles [165]. Similar analyses exist for micelles formed by diblock copolymers in a selective solvent [166]. Other shapes proposed include ellipsoidal [167] and a sphere-to-cylinder transition [168]. Fluorescence depolarization and NMR studies both point to a rather fluid micellar core consistent with the disorder implied by Fig. Xm-12. [Pg.481]

Fig. XIII-12. Lattice model of a spherical micelle. (From Ref. 160a.)... Fig. XIII-12. Lattice model of a spherical micelle. (From Ref. 160a.)...
Expressing (k) is complicated by the fact that k is not unique. In the Kronig-Penney model, if one replaced k by k + lTil a + b), the energy remained unchanged. In tluee dimensions k is known only to within a reciprocal lattice vector, G. One can define a set of reciprocal vectors, given by... [Pg.106]

Because (k) = (k + G), a knowledge of (k) within a given volume called the Brillouin zone is sufficient to detennine (k) for all k. In one dimension, G = Imld where d is the lattice spacing between atoms. In this case, E k) is known once k is detennined for -%ld < k < %ld. (For example, m the Kronig-Peimey model (fignre Al.3.6). d = a + b and/rwas defined only to within a vector 2nl a + b).) In tlnee dimensions, this subspace can result in complex polyhedrons for the Brillouin zone. [Pg.107]

Phonons are nomial modes of vibration of a low-temperatnre solid, where the atomic motions around the equilibrium lattice can be approximated by hannonic vibrations. The coupled atomic vibrations can be diagonalized into uncoupled nonnal modes (phonons) if a hannonic approximation is made. In the simplest analysis of the contribution of phonons to the average internal energy and heat capacity one makes two assumptions (i) the frequency of an elastic wave is independent of the strain amplitude and (ii) the velocities of all elastic waves are equal and independent of the frequency, direction of propagation and the direction of polarization. These two assumptions are used below for all the modes and leads to the famous Debye model. [Pg.412]

Our discussion of solids and alloys is mainly confined to the Ising model and to systems that are isomorphic to it. This model considers a periodic lattice of N sites of any given symmetry in which a spin variable. S j = 1 is associated with each site and interactions between sites are confined only to those between nearest neighbours. The total potential energy of interaction... [Pg.519]

An alternative fomuilation of the nearest-neighbour Ising model is to consider the number of up f T land down [i] spins, the numbers of nearest-neighbour pairs of spins IT 11- U fl- IT Hand their distribution over the lattice sites. Not all of the spin densities are independent since... [Pg.523]

The Ising model is isomorphic with the lattice gas and with the nearest-neighbour model for a binary alloy, enabling the solution for one to be transcribed into solutions for the others. The tlnee problems are thus essentially one and the same problem, which emphasizes the importance of the Ising model in developing our understanding not only of ferromagnets but other systems as well. [Pg.524]

The relationship between tlie lattice gas and the Ising model follows from the observation that the cell occupation number... [Pg.524]

The relationship between tlie lattice gas and the Ising model is also transparent in the alternative fomuilation of the problem, in temis of the number of down spins [i] and pairs of nearest-neighbour down spins [ii]. For a given degree of site occupation [i]. [Pg.526]

Our discussion shows that the Ising model, lattice gas and binary alloy are related and present one and the same statistical mechanical problem. The solution to one provides, by means of the transcription tables, the solution to the others. Flistorically, however, they were developed independently before the analogy between the models was recognized. [Pg.529]

Onsager s solution to the 2D Ising model in zero field (H= 0) is one of the most celebrated results in theoretical chemistry [105] it is the first example of critical exponents. Also, the solution for the Ising model can be mapped onto the lattice gas, binary alloy and a host of other systems that have Hamiltonians that are isomorphic to the Ising model Hamiltonian. [Pg.549]

Lee T D and Yang C N 1952 Statistical theory of equations of state and phase transitions II. Lattice gas and Ising models Phys. Rev. 87 410... [Pg.556]

An unexpected conclusion from this fonuulation, shown in various degrees of generality in 1970-71, is that for systems that lack tlie synunetry of simple lattice models the slope of the diameter of the coexistence curve... [Pg.645]

No system is exactly unifomi even a crystal lattice will have fluctuations in density, and even the Ising model must pemiit fluctuations in the configuration of spins around a given spin. Moreover, even the classical treatment allows for fluctuations the statistical mechanics of the grand canonical ensemble yields an exact relation between the isothemial compressibility K j,and the number of molecules Ain volume V ... [Pg.647]

Figure Bl.21.1. Atomic hard-ball models of low-Miller-index bulk-temiinated surfaces of simple metals with face-centred close-packed (fee), hexagonal close-packed (licp) and body-centred cubic (bcc) lattices (a) fee (lll)-(l X 1) (b)fcc(lO -(l X l) (c)fcc(110)-(l X 1) (d)hcp(0001)-(l x 1) (e) hcp(l0-10)-(l X 1), usually written as hcp(l010)-(l x 1) (f) bcc(l 10)-(1 x ]) (g) bcc(100)-(l x 1) and (li) bcc(l 11)-(1 x 1). The atomic spheres are drawn with radii that are smaller than touching-sphere radii, in order to give better depth views. The arrows are unit cell vectors. These figures were produced by the software program BALSAC [35]-... Figure Bl.21.1. Atomic hard-ball models of low-Miller-index bulk-temiinated surfaces of simple metals with face-centred close-packed (fee), hexagonal close-packed (licp) and body-centred cubic (bcc) lattices (a) fee (lll)-(l X 1) (b)fcc(lO -(l X l) (c)fcc(110)-(l X 1) (d)hcp(0001)-(l x 1) (e) hcp(l0-10)-(l X 1), usually written as hcp(l010)-(l x 1) (f) bcc(l 10)-(1 x ]) (g) bcc(100)-(l x 1) and (li) bcc(l 11)-(1 x 1). The atomic spheres are drawn with radii that are smaller than touching-sphere radii, in order to give better depth views. The arrows are unit cell vectors. These figures were produced by the software program BALSAC [35]-...
Figure Bl.21.2. Atomic hard-ball models of stepped and kinked high-Miller-index bulk-temiinated surfaces of simple metals with fee lattices, compared with anfcc(l 11) surface fcc(755) is stepped, while fee... Figure Bl.21.2. Atomic hard-ball models of stepped and kinked high-Miller-index bulk-temiinated surfaces of simple metals with fee lattices, compared with anfcc(l 11) surface fcc(755) is stepped, while fee...
Salsburg Z W, Jacobson J D, Fickett W and Wood W W 1959 Application of the Monte Carlo method to the lattice gas model. Two dimensional triangular lattice J. Chem. Phys. 30 65-72... [Pg.2280]

Harris J and Rice S A 1988 A lattice model of a supported monolayer of amphiphile molecules—Monte Carlo simulations J. Ohem. Phys. 88 1298-306... [Pg.2285]

Fabbri U and Zannoni C 1986 A Monte Carlo investigation of the Lebwohl-Lasher lattice model in the vicinity of its orientational phase transition Mol. Phys. 58 763-88... [Pg.2286]

A compact aud readable iutroductiou to Moute Carlo, with examples aud exercises, plus useful pointers to the literature on lattice models. [Pg.2291]


See other pages where Modelling lattice models is mentioned: [Pg.372]    [Pg.67]    [Pg.69]    [Pg.134]    [Pg.652]    [Pg.380]    [Pg.524]    [Pg.528]    [Pg.529]    [Pg.534]    [Pg.550]    [Pg.643]    [Pg.926]    [Pg.1115]    [Pg.1117]    [Pg.1371]    [Pg.1701]    [Pg.1769]   


SEARCH



Lattice models

© 2024 chempedia.info