Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Toluene model

Nalewajski, R. F. and A. Michalak. 1995. Use of charge sensitivity analysis in diagnosing chemisorption clusters Minimum-energy coordinate and Fukui function study of model toluene-[V205] Systems. Int. J. Quantum Chem. 56 603-613. [Pg.477]

At high temperatures, reaction (15) is the most important radical branching process in combustion at pressures below 1 atm. Emdee et al. [44] missed out many of the reactions that produce H atoms in modelling toluene oxidation at 1200 K, and as a result obtained a value for a factor of about 100 too high. [Pg.73]

Examine the molecu lar models of toluene and (trifluro methyl)benzene on Learning By Modeling In which mole cule IS the electrostatic po tential of the ring most negative How should this affect the rate of nitration ... [Pg.488]

Although this experiment is written as a dry-lab, it can be adapted to the laboratory. Details are given for the determination of the equilibrium constant for the binding of the Lewis base 1-methylimidazole to the Lewis acid cobalt(II)4-trifluoromethyl-o-phenylene-4,6-methoxysalicylideniminate in toluene. The equilibrium constant is found by a linear regression analysis of the absorbance data to a theoretical equilibrium model. [Pg.447]

Table 6.7 gives a few other examples of torsional barrier heights. That for ethylene is high, typical of a double bond, but its value is uncertain. The barriers for methyl alcohol and ethane are three-fold, which can be confirmed using molecular models, and fhose of toluene and nifromefhane are six-fold. The decrease in barrier heighf on going fo a higher-fold barrier is fypical. Rofafion abouf fhe C—C bond in toluene and fhe C—N bond in nifromefhane is very nearly free. [Pg.192]

The early kinetic models for copolymerization, Mayo s terminal mechanism (41) and Alfrey s penultimate model (42), did not adequately predict the behavior of SAN systems. Copolymerizations in DMF and toluene indicated that both penultimate and antepenultimate effects had to be considered (43,44). The resulting reactivity model is somewhat compHcated, since there are eight reactivity ratios to consider. [Pg.193]

The first quantitative model, which appeared in 1971, also accounted for possible charge-transfer complex formation (45). Deviation from the terminal model for bulk polymerization was shown to be due to antepenultimate effects (46). Mote recent work with numerical computation and C-nmr spectroscopy data on SAN sequence distributions indicates that the penultimate model is the most appropriate for bulk SAN copolymerization (47,48). A kinetic model for azeotropic SAN copolymerization in toluene has been developed that successfully predicts conversion, rate, and average molecular weight for conversions up to 50% (49). [Pg.193]

The abihty of a four-parameter, two-parallel reaction model to correlate pilot-scale rotary kiln, toluene-desorption results (26) is shown in Figure 6. The model assumes that the adsorbed toluene consists of two fractions, T and F, which are tightly and loosely bound, respectively. [Pg.51]

Fig. 6. Pilot-scale kiln results for a fill fraction of 0.08% at 0.5 rpm and an initial toluene loading, on a dry, calcined, montmorillonite clay adsorbent, of 0.25 wt %, at A, 790°C B, 330°C and C, 190°C. The soHd lines are model fits using equation 24. The model simultaneously fits to all of the data (24). Fig. 6. Pilot-scale kiln results for a fill fraction of 0.08% at 0.5 rpm and an initial toluene loading, on a dry, calcined, montmorillonite clay adsorbent, of 0.25 wt %, at A, 790°C B, 330°C and C, 190°C. The soHd lines are model fits using equation 24. The model simultaneously fits to all of the data (24).
Manufacture and Processing. Mononitrotoluenes are produced by the nitration of toluene in a manner similar to that described for nitrobenzene. The presence of the methyl group on the aromatic ring faciUtates the nitration of toluene, as compared to that of benzene, and increases the ease of oxidation which results in undesirable by-products. Thus the nitration of toluene generally is carried out at lower temperatures than the nitration of benzene to minimize oxidative side reactions. Because toluene nitrates at a faster rate than benzene, the milder conditions also reduce the formation of dinitrotoluenes. Toluene is less soluble than benzene in the acid phase, thus vigorous agitation of the reaction mixture is necessary to maximize the interfacial area of the two phases and the mass transfer of the reactants. The rate of a typical industrial nitration can be modeled in terms of a fast reaction taking place in a zone in the aqueous phase adjacent to the interface where the reaction is diffusion controlled. [Pg.70]

Example 8 Calculation of Rate-Based Distillation The separation of 655 lb mol/h of a bubble-point mixture of 16 mol % toluene, 9.5 mol % methanol, 53.3 mol % styrene, and 21.2 mol % ethylbenzene is to be earned out in a 9.84-ft diameter sieve-tray column having 40 sieve trays with 2-inch high weirs and on 24-inch tray spacing. The column is equipped with a total condenser and a partial reboiler. The feed wiU enter the column on the 21st tray from the top, where the column pressure will be 93 kPa, The bottom-tray pressure is 101 kPa and the top-tray pressure is 86 kPa. The distillate rate wiU be set at 167 lb mol/h in an attempt to obtain a sharp separation between toluene-methanol, which will tend to accumulate in the distillate, and styrene and ethylbenzene. A reflux ratio of 4.8 wiU be used. Plug flow of vapor and complete mixing of liquid wiU be assumed on each tray. K values will be computed from the UNIFAC activity-coefficient method and the Chan-Fair correlation will be used to estimate mass-transfer coefficients. Predict, with a rate-based model, the separation that will be achieved and back-calciilate from the computed tray compositions, the component vapor-phase Miirphree-tray efficiencies. [Pg.1292]

The rate-based model gave a distillate with 0.023 mol % ethylbenzene and 0.0003 mol % styrene, and a bottoms product with essentially no methanol and 0.008 mol % toluene. Miirphree tray efficiencies for toluene, styrene, and ethylbenzene varied somewhat from tray to tray, but were confined mainly between 86 and 93 percent. Methanol tray efficiencies varied widely, mainly from 19 to 105 percent, with high values in the rectifying section and low values in the stripping section. Temperature differences between vapor and liquid phases leaving a tray were not larger than 5 F. [Pg.1292]

Based on an average tray efficiency of 90 percent for the hydrocarbons, the eqiiilibniim-based model calculations were made with 36 equilibrium stages. The results for the distillate and bottoms compositions, which were very close to those computed by the rate-based method, were a distillate with 0.018 mol % ethylbenzene and less than 0.0006 mol % styrene, and a bottoms product with only a trace of methanol and 0.006 mol % toluene. [Pg.1292]

A. Alkylation Reaction of Toluene as Model Compound with Epichlorohydrin... [Pg.263]

The mechanism of chemical modification reactions of PS were determined using toluene as a model compound with EC in the presence of BF3-0(C2H5)2 catalyst and the kinetics and mechanism of the alkylation reaction were also determined under similar conditions [53-55]. The alkylation reaction of toluene, with epichlorohydrin, underwent polymerization of EC in the presence of Lewis acid catalysis at a low temperature (273 K) as depicted in Scheme (9). [Pg.263]

Table 2 Kinetic Parameters of PS and Toluene as a Model Compound... Table 2 Kinetic Parameters of PS and Toluene as a Model Compound...
The diazo function in compound 4 can be regarded as a latent carbene. Transition metal catalyzed decomposition of a diazo keto ester, such as 4, could conceivably lead to the formation of an electron-deficient carbene (see intermediate 3) which could then insert into the proximal N-H bond. If successful, this attractive transition metal induced ring closure would accomplish the formation of the targeted carbapenem bicyclic nucleus. Support for this idea came from a model study12 in which the Merck group found that rhodi-um(n) acetate is particularly well suited as a catalyst for the carbe-noid-mediated cyclization of a diazo azetidinone closely related to 4. Indeed, when a solution of intermediate 4 in either benzene or toluene is heated to 80 °C in the presence of a catalytic amount of rhodium(n) acetate (substrate catalyst, ca. 1000 1), the processes... [Pg.254]

Attempts were made to determine number average molecular weights (Mn) by osmometry (Mechrolab Model 502, high speed membrane osmometer, 1 to 10 g/1 toluene solution at 37 °C), however, in many instances irreproducible data were obtained, probably due to the diffusion of low molecular weight polymer through the membrane. This technique was abandoned in favor of gel permeation chromatography (GPC). [Pg.90]


See other pages where Toluene model is mentioned: [Pg.104]    [Pg.10]    [Pg.104]    [Pg.10]    [Pg.308]    [Pg.223]    [Pg.453]    [Pg.453]    [Pg.2577]    [Pg.130]    [Pg.449]    [Pg.64]    [Pg.21]    [Pg.192]    [Pg.195]    [Pg.79]    [Pg.266]    [Pg.545]    [Pg.744]    [Pg.150]    [Pg.714]    [Pg.262]    [Pg.38]    [Pg.385]    [Pg.80]    [Pg.293]    [Pg.310]    [Pg.460]    [Pg.22]    [Pg.27]    [Pg.100]    [Pg.202]   
See also in sourсe #XX -- [ Pg.404 ]




SEARCH



Model toluene contamination

Selective toluene disproportionation model

Toluene and iso-octane model

Toluene molecular model

© 2024 chempedia.info