Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixing driving forces

Passive or active Mixing driving force Type... [Pg.114]

Lost work, EW, is the irreversible loss in exergy that occurs because a process operates with driving forces or mixes material at different temperatures or compositions. [Pg.83]

Tray Efficiencies in Plate Absorbers and Strippers Compn-tations of the nnmber of theoretical plates N assnme that the hqnia on each plate is completely mixed and that the vapor leaving the plate is in eqnihbrinm with the liqnid. In actnal practice a condition of complete eqnihbrinm cannot exist since interphase mass transfer reqnires a finite driving-force difference. This leads to the definition of an overall plate efficiency... [Pg.1358]

A solution is a single-phase mixture of more than one compound, and the driving force for its spontaneous formation from the pure compounds at constant T and p is the negative Gibbs free energy change of the mixing process, —AG, as... [Pg.46]

A special case of opposing reactions is the one in which chemical equilibrium has been attained, but not isotopic equilibrium. Isotopic equilibration reactions are termed exchange reactions. They occur with virtually no net driving force i.e., AG 4 is very nearly zero, save for that provided by the entropy of isotopic mixing. [Pg.55]

HARRIOTT 25 suggested that, as a result of the effects of interfaeial tension, the layers of fluid in the immediate vicinity of the interface would frequently be unaffected by the mixing process postulated in the penetration theory. There would then be a thin laminar layer unaffected by the mixing process and offering a constant resistance to mass transfer. The overall resistance may be calculated in a manner similar to that used in the previous section where the total resistance to transfer was made up of two components—a Him resistance in one phase and a penetration model resistance in the other. It is necessary in equation 10.132 to put the Henry s law constant equal to unity and the diffusivity Df in the film equal to that in the remainder of the fluid D. The driving force is then CAi — CAo in place of C Ao — JPCAo, and the mass transfer rate at time t is given for a film thickness L by ... [Pg.613]

The origin of postulate (iii) lies in the electron-nuclear hyperfine interaction. If the energy separation between the T and S states of the radical pair is of the same order of magnitude as then the hyperfine interaction can represent a driving force for T-S mixing and this depends on the nuclear spin state. Only a relatively small preference for one spin-state compared with the other is necessary in the T-S mixing process in order to overcome the Boltzmann polarization (1 in 10 ). The effect is to make n.m.r. spectroscopy a much more sensitive technique in systems displaying CIDNP than in systems where only Boltzmann distributions of nuclear spin states obtain. More detailed consideration of postulate (iii) is deferred until Section II,D. [Pg.58]

At time [Case (2)] therefore, the hj rfine energy is approximately equal to the energy difference between the S and T states and can provide the driving force for T-S mixing. Now the h3q>erfine constants and Oj are a function of both nuclear and electronic spin states and thus one particular nuclear spin state for Hj and Hj will induce the T-S mixing more readily than the other. Thus nuclear spin selection occurs during the transition between S and T manifolds. However, this would yield no... [Pg.64]

This section has based scaleups on pressure drops and temperature driving forces. Any consideration of mixing, and particularly the closeness of approach to piston flow, has been ignored. Scaleup factors for the extent of mixing in a tubular reactor are discussed in Chapters 8 and 9. If the flow is turbulent and if the Reynolds number increases upon scaleup (as is normal), and if the length-to-diameter ratio does not decrease upon scaleup, then the reactor will approach piston flow more closely upon scaleup. Substantiation for this statement can be found by applying the axial dispersion model discussed in Section 9.3. All the scaleups discussed in Examples 5.10-5.13 should be reasonable from a mixing viewpoint since the scaled-up reactors will approach piston flow more closely. [Pg.183]

The general mechanistic features of the aldol addition and condensation reactions of aldehydes and ketones were discussed in Section 7.7 of Part A, where these general mechanisms can be reviewed. That mechanistic discussion pertains to reactions occurring in hydroxylic solvents and under thermodynamic control. These conditions are useful for the preparation of aldehyde dimers (aldols) and certain a,(3-unsaturated aldehydes and ketones. For example, the mixed condensation of aromatic aldehydes with aliphatic aldehydes and ketones is often done under these conditions. The conjugation in the (3-aryl enones provides a driving force for the elimination step. [Pg.64]

Products Driving forces Threats Organotin, mixed metal, lead-based Growth in PVC consumption (construction applications) PVC image... [Pg.718]

To evaluate the true temperature difference (driving force) in a mixed vapour condenser a condensation curve (temperature vs. enthalpy diagram) must be calculated showing the change in vapour temperature versus heat transferred throughout the condenser, Figure 12.48. The temperature profile will depend on the liquid-flow pattern in the condenser. There are two limiting conditions of condensate-vapour flow ... [Pg.720]


See other pages where Mixing driving forces is mentioned: [Pg.157]    [Pg.157]    [Pg.2764]    [Pg.68]    [Pg.409]    [Pg.412]    [Pg.351]    [Pg.505]    [Pg.545]    [Pg.42]    [Pg.304]    [Pg.1292]    [Pg.1474]    [Pg.1665]    [Pg.1667]    [Pg.2136]    [Pg.191]    [Pg.46]    [Pg.249]    [Pg.360]    [Pg.72]    [Pg.146]    [Pg.648]    [Pg.222]    [Pg.654]    [Pg.171]    [Pg.236]    [Pg.700]    [Pg.815]    [Pg.86]    [Pg.216]    [Pg.291]    [Pg.57]    [Pg.182]    [Pg.810]    [Pg.667]    [Pg.229]    [Pg.234]    [Pg.126]    [Pg.126]   
See also in sourсe #XX -- [ Pg.296 ]




SEARCH



Forced mixing

© 2024 chempedia.info