Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mixing continued hydrodynamic

In what follows, both macromixing and micromixing models will be introduced and a compartmental mixing model, the segregated feed model (SFM), will be discussed in detail. It will be used in Chapter 8 to model the influence of the hydrodynamics on a meso- and microscale on continuous and semibatch precipitation where using CFD, diffusive and convective mixing parameters in the reactor are determined. [Pg.49]

This study investigates the hydrodynamic behaviour of an aimular bubble column reactor with continuous liquid and gas flow using an Eulerian-Eulerian computational fluid dynamics approach. The residence time distribution is completed using a numerical scalar technique which compares favourably to the corresponding experimental data. It is shown that liquid mixing performance and residence time are strong functions of flowrate and direction. [Pg.669]

The archetypal, stagewise extraction device is the mixer-settler. This consists essentially of a well-mixed agitated vessel, in which the two liquid phases are mixed and brought into intimate contact to form a two phase dispersion, which then flows into the settler for the mechanical separation of the two liquid phases by continuous decantation. The settler, in its most basic form, consists of a large empty tank, provided with weirs to allow the separated phases to discharge. The dispersion entering the settler from the mixer forms an emulsion band, from which the dispersed phase droplets coalesce into the two separate liquid phases. The mixer must adequately disperse the two phases, and the hydrodynamic conditions within the mixer are usually such that a close approach to equilibrium is obtained within the mixer. The settler therefore contributes little mass transfer function to the overall extraction device. [Pg.183]

The available models mostly refer to ideal reactors, STR, CSTR, continuous PFR. The extension of these models to real reactors should take into account the hydrodynamics of the vessel, expressed in terms of residence time distribution and mixing state. The deviation of the real behavior from the ideal reactors may strongly affect the performance of the process. Liquid bypass - which is likely to occur in fluidized beds or unevenly packed beds - and reactor dead zones - due to local clogging or non-uniform liquid distribution - may be responsible for the drastic reduction of the expected conversion. The reader may refer to chemical reactor engineering textbooks [51, 57] for additional details. [Pg.118]

Attempts have been made to expand the technique to include the analysis of soil biotransformations f23.29V While the hydrodynamic nature and physical structure of soil systems vary widely and are difficult to establish with certainty, two limiting conditions may be specified. The first is where the soil particles are suspended and all phases are well-mixed. This case is not typically found in nature, but is found in various types of engineered soil-slurry reactors. The reactors currently used in our systems experiments include continuous stirred tank reactors (CSTRs) operated to minimize soil washout. [Pg.28]

The basic hydrodynamic equilibrium system (Fig. 1, right) uses a rotating coil which generates an Archimedean screw effect where all objects in different density present in the coil are driven toward one end, conventionally called the head. The mobile phase introduced through the head of the coil is mixed with the stationary phase to establish a hydrodynamic equilibrium, where a portion of the stationary phase is retained in each turn of the coil. This process continues until the mobile phase elutes from the tail of the coil. After the hydrodynamic equilibrium is established throughout the coil, the mobile phase displaces only the same phase, leaving the other phase stationary in the coil. Consequently, solutes introduced locally at the head of the coil is subjected to an efficient partition process between the two phases and separated according their partition coefficients. [Pg.851]

To derive the overall kinetics of a gas/liquid-phase reaction it is required to consider a volume element at the gas/liquid interface and to set up mass balances including the mass transport processes and the catalytic reaction. These balances are either differential in time (batch reactor) or in location (continuous operation). By making suitable assumptions on the hydrodynamics and, hence, the interfacial mass transfer rates, in both phases the concentration of the reactants and products can be calculated by integration of the respective differential equations either as a function of reaction time (batch reactor) or of location (continuously operated reactor). In continuous operation, certain simplifications in setting up the balances are possible if one or all of the phases are well mixed, as in continuously stirred tank reactor, hereby the mathematical treatment is significantly simplified. [Pg.751]

Stellar nucleosynthesis also needs continuing attention. The biggest remaining problem in theoretical stellar evolution and nucleosynthesis continues to be the treatment of convective mixing, which affects both structure and nucleosynthesis. This is also a hydrodynamical problem requiring improved computing power, and should provide a source of entertainment (and argument) for some time. [Pg.211]


See other pages where Mixing continued hydrodynamic is mentioned: [Pg.193]    [Pg.69]    [Pg.79]    [Pg.82]    [Pg.292]    [Pg.171]    [Pg.150]    [Pg.100]    [Pg.413]    [Pg.190]    [Pg.192]    [Pg.218]    [Pg.289]    [Pg.396]    [Pg.184]    [Pg.930]    [Pg.420]    [Pg.65]    [Pg.362]    [Pg.269]    [Pg.257]    [Pg.168]    [Pg.188]    [Pg.27]    [Pg.194]    [Pg.192]    [Pg.171]    [Pg.289]    [Pg.30]    [Pg.189]    [Pg.6565]    [Pg.49]    [Pg.816]    [Pg.262]    [Pg.264]    [Pg.339]    [Pg.418]    [Pg.206]    [Pg.134]    [Pg.867]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



CONTINUOUS MIXING

Hydrodynamic mixing

Hydrodynamics mixing

Mixing continued

© 2024 chempedia.info