Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mineralocorticoids synthesis

It may be hypothesized that low activation of A-kinase and high activation of the other intracellular messengers in the outermost cortex results in mineralocorticoid synthesis, whereas high activation of A-kinase and low C-kinase in the innermost... [Pg.207]

It was known for some time that even after the corticoids had been separated from crude extracts of the adrenal cortex, the remaining material, the so-called "amorphous fraction" still possessed considerable mineralocorticoid activity. Aldosterone (250), one of the last steroids to be isolated from this fraction, proved to be the active principle. This compound proved to be an extremely potent agent for the retention of salt, and thus water, in body fluids. An antagonist would be expected to act as a diuretic in those edematous states caused by excess sodium retention. Although aldosterone has been prepared by both total and partial synthesis, the complexity of the molecule discouraged attempts to prepare antagonists based directly on the parent compound. [Pg.206]

ACE inhibitors do not completely block aldosterone synthesis. Since this steroid hormone is a potent inducer of fibrosis in the heart, specific antagonists, such as spironolactone and eplerenone, have recently been very successfully used in clinical trials in addition to ACE inhibitors to treat congestive heart failure [5]. Formerly, these drugs have only been applied as potassium-saving diuretics in oedematous diseases, hypertension, and hypokalemia as well as in primary hyperaldosteronism. Possible side effects of aldosterone antagonists include hyperkalemia and, in case of spironolactone, which is less specific for the mineralocorticoid receptor than eplerenone, also antiandrogenic and progestational actions. [Pg.1069]

Cortisol synthesis requires three hydroxylases located in the fasciculata and reticularis zones of the adrenal cortex that act sequentially on the Cjy, C21, and Cjj positions. The first two reactions are rapid, while Cu hydroxylation is relatively slow. If the C, position is hydroxylated first, the action of 17a-hydroxylase is impeded and the mineralocorticoid pathway is followed (forming corti-... [Pg.440]

The zona glomerulosa is responsible for the production of the mineralocorticoids aldosterone, deoxycorticosterone, and 18-hydroxy-deoxycorticosterone. Aldosterone promotes renal sodium retention and excretion of potassium. Its synthesis and release are regulated by renin in response to decreased vascular volume and renal perfusion. Adrenal aldosterone production is regulated by the renin-angiotensin-aldosterone system. [Pg.687]

Metyrapone inhibits 11-hydroxylase activity, resulting in inhibition of cortisol synthesis. Initially, patients can demonstrate an increase in plasma ACTH concentrations because of a sudden drop in cortisol. This can cause an increase in androgenic and mineralocorticoid hormones resulting in hypertension, acne, and hirsutism. Nausea, vomiting, vertigo, headache, dizziness, abdominal discomfort, and allergic rash have been reported after oral administration. [Pg.219]

Corticosteroids synthesized by the adrenal gland are mineralocorticoids and GC. Min-eralocorticoids regulate fluid and electrolyte balance by affecting ion transport in the kidney. Cortisol, the primary circulating GC in most species (including humans), has many activities, including resistance to stress, regulation of intermediary metabolism, and immunosuppressive and anti-inflammatory effects. GC synthesis and secretion is... [Pg.493]

Corticosteroids are produced by the adrenal glands, and display two main types of biological activity. Glucocorticoids are concerned with the synthesis of carbohydrate from protein and the deposition of glycogen in the liver. They also play an important role in inflammatory processes. Mineralocorticoids are concerned with the control of electrolyte balance, promoting the retention of Na+ and CC, and the excretion of K+. Synthetic and semi-synthetic corticosteroid drugs are widely used in medicine. Glncocorticoids are primarily nsed for their antirhenmatic and anti-inflammatory activities, and mineralocorticoids are nsed to maintain electrolyte balance where there is adrenal insufficiency. [Pg.291]

The mechanism by which Na" is reabsorbed in coupled exchange with and K+ in the collecting duct has been discussed previously that is, Na+-driven K+ secretion is partially under mineralocorticoid control. Aldosterone and other compounds with mineralocorticoid activity bind to a specific mineralocorticoid receptor in the cytoplasm of late distal tubule cells and of principal cells of the collecting ducts. This hormone-receptor complex is transported to the cell nucleus, where it induces synthesis of multiple proteins that are collectively called aldosterone-induced proteins. The precise mechanisms by which these proteins enhance Na+ transport are incompletely understood. However, the net effect is to increase Na" entry across apical cell membranes and to increase basolateral membrane Na+-K+-ATPase activity and synthesis. [Pg.247]

The steroid-inhibiting properties of metyrapone have also been used in the treatment of Cushing s syndrome, and it remains one of the more effective drugs used to treat this syndrome. However, the compensatory rise in corticotrophin levels in response to falling cortisol levels tends to maintain adrenal activity. This requires that glucocorticoids be administered concomitantly to suppress hypothalamic-pituitary activity. Although metyrapone interferes with lip- and 18-hydroxylation reactions and thereby inhibits aldosterone synthesis, it may not cause mineralocorticoid deficiency because of the compensatory increased production of 11-desoxycorticosterone. [Pg.699]

Regardless of their source of synthesis, glucocorticoids, mineralocorticoids, androgens, estrogens, and progestins exert their effects on the brain through... [Pg.440]

Figure 12.6 Mechanism of action of mineralocortjcoid receptor antagonists in the collecting tubule. Aldosterone enters the tubular cell by the basolateral surface and binds to a specific mineralocorticoid receptor (MNR) in the cytoplasm. The hormone receptor complex triggers the production of an aldosterone-induced protein (AlP) by the cell nucleus (NUC). The AIP acts on the sodium ion channel (ic) to augment the transport of Na+across the basolateral membrane and in to the cell. An increase in AIP activity leads to the recruitment of dormant sodium ion channels and Na pumps (P) in the cell membrane. AIP also leads to the synthesis of new channels and pumps within the cell. The increase in Na+conductance causes electrical changes in the luminal membrane that favour the excretion of intracellular cations, such as K+and H-h. Spironolactone competes with aldosterone for the binding site on the MNR and forms a complex which does not excite the production of AIP by the nucleus. Figure 12.6 Mechanism of action of mineralocortjcoid receptor antagonists in the collecting tubule. Aldosterone enters the tubular cell by the basolateral surface and binds to a specific mineralocorticoid receptor (MNR) in the cytoplasm. The hormone receptor complex triggers the production of an aldosterone-induced protein (AlP) by the cell nucleus (NUC). The AIP acts on the sodium ion channel (ic) to augment the transport of Na+across the basolateral membrane and in to the cell. An increase in AIP activity leads to the recruitment of dormant sodium ion channels and Na pumps (P) in the cell membrane. AIP also leads to the synthesis of new channels and pumps within the cell. The increase in Na+conductance causes electrical changes in the luminal membrane that favour the excretion of intracellular cations, such as K+and H-h. Spironolactone competes with aldosterone for the binding site on the MNR and forms a complex which does not excite the production of AIP by the nucleus.
Angiotensin II has a variety of effects. By constricting blood vessels it raises blood pressure, and by stimulating thirst centers in the brain it increases blood volume. Both angiotensins II and III also act on the adrenal gland to promote the synthesis and release of aldosterone. Most of the effects of angiotension II are mediated by 359-residue seven-helix G-protein linked receptors which activate phospholipase C.p q qr Like other steroid hormones aldosterone acts,via mineralocorticoid receptors, to control transcription of a certain set of proteins. The end effect is to increase the transport of Na+ across the renal tubules and back into the blood. Thus, aldosterone acts to decrease the loss of Na+ from the body. It promotes retention of water and raises... [Pg.1261]

The adrenocorticotrophic hormone ACTH (corticotropin) stimulates the adrenal cortex to secrete the glucocorticoids hydrocortisone (cortisol) and corticosterone, the mineralocorticoid aldosterone, and a number of weakly androgenic substances, as well as a small amount of testosterone. Aldosterone synthesis is also regulated by renin and angiotensin. [Pg.95]


See other pages where Mineralocorticoids synthesis is mentioned: [Pg.438]    [Pg.1306]    [Pg.72]    [Pg.438]    [Pg.1306]    [Pg.72]    [Pg.414]    [Pg.434]    [Pg.174]    [Pg.849]    [Pg.609]    [Pg.894]    [Pg.437]    [Pg.438]    [Pg.441]    [Pg.1362]    [Pg.84]    [Pg.276]    [Pg.164]    [Pg.376]    [Pg.389]    [Pg.691]    [Pg.691]    [Pg.337]    [Pg.216]    [Pg.193]    [Pg.888]    [Pg.240]    [Pg.95]    [Pg.576]    [Pg.7]    [Pg.415]   
See also in sourсe #XX -- [ Pg.438 , Pg.439 , Pg.441 ]

See also in sourсe #XX -- [ Pg.749 ]




SEARCH



Mineralocorticoids

Zona glomerulosa, mineralocorticoid synthesis

© 2024 chempedia.info