Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Migratory reductive elimination

Figure 2.18. "Migratory" reductive elimination and oxidative addition... Figure 2.18. "Migratory" reductive elimination and oxidative addition...
The migratory reductive elimination process is consistent with the kinetic data reported for C-C reductive elimination from c/5-PdMe(C6H4-p-Y)(PEt2Ph)2 complexes (Scheme 9.5) [16], The rate constants exhibit a good Hammett correlation with Ojt values of Y, which are synthetic parameters introduced by Yukawa and Tsuno for isolating resonance effects. On the other hand, no correlation was observed with o or Op values. Positive sign of the p value (-1-3.2) indicates a major contribution of tt-electrophilicity of aryl ligand in the C-C bond formation. [Pg.486]

Ruthenium complex-catalyzed addition of C-H bonds of aromatic esters to olefins involves C-C reductive elimination as the product forming step [74], for which a migratory reductive elimination process involving a zwitter ionic intermediate 21 has been proposed (Scheme 9.33) [75]. [Pg.504]

The proposed mechanism for Fe-catalyzed 1,4-hydroboration is shown in Scheme 28. The FeCl2 is initially reduced by magnesium and then the 1,3-diene coordinates to the iron center (I II). The oxidative addition of the B-D bond of pinacolborane-tfi to II yields the iron hydride complex III. This species III undergoes a migratory insertion of the coordinated 1,3-diene into either the Fe-B bond to produce 7i-allyl hydride complex IV or the Fe-D bond to produce 7i-allyl boryl complex V. The ti-c rearrangement takes place (IV VI, V VII). Subsequently, reductive elimination to give the C-D bond from VI or to give the C-B bond from VII yields the deuterated hydroboration product and reinstalls an intermediate II to complete the catalytic cycle. However, up to date it has not been possible to confirm which pathway is correct. [Pg.51]

Besides dissociation of ligands, photoexcitation of transition metal complexes can facilitate (1) - oxidative addition to metal atoms of C-C, C-H, H-H, C-Hal, H-Si, C-0 and C-P moieties (2) - reductive elimination reactions, forming C-C, C-H, H-H, C-Hal, Hal-Hal and H-Hal moieties (3) - various rearrangements of atoms and chemical bonds in the coordination sphere of metal atoms, such as migratory insertion to C=C bonds, carbonyl and carbenes, ot- and P-elimination, a- and P-cleavage of C-C bonds, coupling of various moieties and bonds, isomerizations, etc. (see [11, 12] and refs, therein). [Pg.38]

The Mizoroki-Heck reaction is a metal catalysed transformation that involves the reaction of a non-functionalised olefin with an aryl or alkenyl group to yield a more substituted aUcene [11,12]. The reaction mechanism is described as a sequence of oxidative addition of the catalytic active species to an aryl halide, coordination of the alkene and migratory insertion, P-hydride elimination, and final reductive elimination of the hydride, facilitated by a base, to regenerate the active species and complete the catalytic cycle (Scheme 6.5). [Pg.160]

The addition proceeds through (a) oxidative addition of the B-X bond to a low-va-lent metal (M=Pd, Pt) giving a ds-B-M-X complex (92), (b) migratory insertion of alkene or alkyne into the B-M bond (93 94), and finally (c) reductive elimination... [Pg.26]

The current mechanistic understanding of these reductive cyclization processes is largely conjecture. Stepwise oxidative addition, migratory insertion, and reductive elimination (see Scheme 26) is a widely proposed mechanism. However, other mechanisms - such as initial cyclometallation - are to afford a rhodacyclopentadiene followed by either oxidative addition to a rhodium(v) intermediate or (perhaps more likely) bond metathesis with an additional molecule of silane (Scheme 28). [Pg.810]

The higher catalytic activity of the cluster compound [Pd4(dppm)4(H2)](BPh4)2 [21] (20 in Scheme 4.12) in DMF with respect to less coordinating solvents (e.g., THF, acetone, acetonitrile), combined with a kinetic analysis, led to the mechanism depicted in Scheme 4.12. Initially, 20 dissociates into the less sterically demanding d9-d9 solvento-dimer 21, which is the active catalyst An alkyne molecule then inserts into the Pd-Pd bond to yield 22 and, after migratory insertion into the Pd-H bond, the d9-d9 intermediate 23 forms. Now, H2 can oxidatively add to 23 giving rise to 24 which, upon reductive elimination, results in the formation of the alkene and regenerates 21. [Pg.87]

An informative set of calculations was carried out by Brandt et al, coupled to experimental studies that demonstrated first-order dependence of the turnover rate on both catalyst and H2, and zero-order dependence on alkene (a-methyl-(E)-stilbene) concentration [71]. The incentive for this investigation was the absence of any characterized advanced intermediates on the catalytic pathway. As a result of the computation, a catalytic cycle (for ethene) was proposed in which H2 addition to iridium was followed by alkene coordination and migratory insertion. The critical difference in this study was the proposal that a second molecule of H2 is involved that facilitates formation of the Ir alkylhydride intermediate. In addition, the reductive elimination of R-H and re-addition of H2 are concerted. This postulate was subsequently challenged. For hydrogenation of styrene by the standard Pfaltz catalyst, ES-MS analysis of the intermediates formed at different stages in the catalytic cycle revealed only Ir(I) and Ir(III) species, supporting a cycle (at least under low-pressure conditions in the gas... [Pg.1096]

With Pd(0) generated in situ, the oxidative addition of aryl bromide 102 to Pd(0) proceeds to form Pd(II) intermediate 104. Migratory insertion of 104 then occurs to furnish the cyclized indoline intermediate 105. Subsequent reductive elimination of 105 takes place in a cis fashion, giving rise to exo-cyclic olefin 107, which then tautomerizes spontaneously to the thermodynamically more stable indole 103. The reductive elimination by-product as a palladium hydride species 106 reacts with base, regenerating Pd(0) to close the catalytic cycle. [Pg.25]

Key words ONIOM, hydrogenation, enantioselectivity, asymmetric catalysis, DFT, reaction mechanism, chiral phosphine, ab initio, valence bond, oxidative addition, migratory insertion, reductive elimination. [Pg.107]

A key feature of the mechanism of Wilkinson s catalyst is that catalysis begins with reaction of the solvated catalyst, RhCl(PPh3)2S (S=solvent), and H2 to form a solvated dihydride Rh(H)2Cl(PPh3)2S [1], In a subsequent step the alkene binds to the catalyst and then is transformed into product via migratory insertion and reductive elimination steps. Schrock and Osborn investigated solvated cationic complexes [M(PR3)2S2]+ (M=Rh, Ir and S= solvent) that are closely related to Wilkinson s catalyst. Similarly to Wilkinson s catalyst, the mechanistic sequence proposed by Schrock and Osborn features initial reaction of the catalyst with H2 followed by reaction of the dihydride with alkene for the case of monophosphine-ligated rhodium and iridium catalysts [12-17]. Such mechanisms commonly are characterized... [Pg.109]

Figure 1.. The two proposed reaction pathways based on experimental results for hydroboration reactions of olefins catalyzed by the Wilkinson catalyst. (O.A. Oxidative Addition Olefin Migratory Insertion R.E. Reductive Elimination)... Figure 1.. The two proposed reaction pathways based on experimental results for hydroboration reactions of olefins catalyzed by the Wilkinson catalyst. (O.A. Oxidative Addition Olefin Migratory Insertion R.E. Reductive Elimination)...
Conversion of a Co2(CO)6-alkyne complex into a cyclopentenone is the Pauson-Khand reaction. It proceeds by loss of CO from one Co to make a 16-electron complex, coordination and insertion of the C6=C7 K bond into the C2-Co bond to make the C2-C6 bond and a C7-Co bond, migratory insertion of CO into the C7-Co bond to make the C7-C8 bond, reductive elimination of the C1-C8 bond from Co, and decomplexation of the other Co from the C1=C2 k bond. The mechanism is discussed in the text (Section B.l.f). [Pg.192]

Complexes 6 undergo the second migratory insertion in this scheme to form the acyl complexes 7. Complexes 7 can react either with CO to give the saturated acyl intermediates 8, which have been observed spectroscopically, or with H2 to give the aldehyde product and the unsaturated intermediates 3. The reaction with H2 involves presumably oxidative addition and reductive elimination, but for rhodium no trivalent intermediates have been observed. For iridium the trivalent intermediate acyl dihydrides have been observed [29], The Rh-acyl intermediates 8 have also been observed [26] and due to the influence of the more bulky acyl group, as compared to the hydride atom in 2e and 2a, isomer 8ae is the most abundant species. [Pg.143]

The basic steps are well known after oxidative addition of HCN, we find coordination of ethene, migratory insertion of ethene into the nickel hydride bond, and reductive elimination of ethyl cyanide (propanenitrile). More detailed studies by Du Pont s McKinney and Roe [3] have shown that the productive cycle involves the reductive elimination by the process shown in Figure 11.2. [Pg.230]

Vinylation or arylation of alkenes with the aid of a palladium catalysts is known as the Heck reaction. The reaction is thought to proceed through the oxidative addition of an organic halide, RX onto a zero-valent [PdL2] species followed by coordination of the olefin, migratory insertion of R, reductive elimination of the coupled product and dehydrohalogenation of the intermediate [HPdXL2] (Scheme 6.1). [Pg.165]


See other pages where Migratory reductive elimination is mentioned: [Pg.40]    [Pg.255]    [Pg.260]    [Pg.293]    [Pg.293]    [Pg.210]    [Pg.40]    [Pg.255]    [Pg.260]    [Pg.293]    [Pg.293]    [Pg.210]    [Pg.180]    [Pg.228]    [Pg.205]    [Pg.301]    [Pg.304]    [Pg.74]    [Pg.267]    [Pg.280]    [Pg.581]    [Pg.218]    [Pg.664]    [Pg.791]    [Pg.792]    [Pg.815]    [Pg.841]    [Pg.11]    [Pg.386]    [Pg.1097]    [Pg.18]    [Pg.26]    [Pg.118]    [Pg.190]    [Pg.240]    [Pg.203]   
See also in sourсe #XX -- [ Pg.41 ]




SEARCH



Migratory reductive elimination process

© 2024 chempedia.info