Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microwave diffusers

Based on their microwave digestion system, Milestone offers the MicroSYNTH labstation (also known as ETHOS series) multimode instrument (Fig. 3.4 and Table 3.1), which is available with various accessories. Two magnetrons deliver 1000 W microwave output power and a patented pyramid-shaped microwave diffuser ensures homogeneous microwave distribution within the cavity [12]. [Pg.34]

A number of chemiluminescent reactions have been studied by producing key reactants through pulsed electric discharge, by microwave dissociation, or by observing the reactions of atoms and free radicals produced in the inner cone of a laminar flame as they diffuse into the flame s cool outer cone (182,183). These are either combination reactions or atom-transfer reactions involving transfer of chlorine (184) or oxygen atoms (181,185—187), the latter giving excited oxides. [Pg.270]

Figure 4a. Electrochemical cells for microwave conductivity measurements. Cell above microwave conduit (1) electrochemical cell (plastic tube, placed on working electrode material), (2) counter-electrode, (3) reference electrode, (4) electrolyte, (5) space charge layer, (6) diffusion layer, (7) contact to working electrode, (8) waveguide. Figure 4a. Electrochemical cells for microwave conductivity measurements. Cell above microwave conduit (1) electrochemical cell (plastic tube, placed on working electrode material), (2) counter-electrode, (3) reference electrode, (4) electrolyte, (5) space charge layer, (6) diffusion layer, (7) contact to working electrode, (8) waveguide.
The photoinduced microwave conductivity signal, on the other hand, can be described by the following integral over the excess minority carriers, to be taken over both the diffusion and the space charge region ... [Pg.459]

Color mimicking by means of electrochemistry, 361 Completion of oxidation for polymers and diffusion control, 414 Concentration effects of microwave energy, 442... [Pg.628]

For polymer/additive analysis complete dissolution is not a prerequisite. Rather, the solvent should at least swell the polymer by diffusion, which allows the physically blended additives to dissolve. True dissolution occurs predominantly when polymer chain lengths are small, on the order of 5000-10 000 Da. Solvent choice for dissolution or extraction should take into account restrictions imposed by further analysis steps (compatibility with chromatographic and/or spectroscopic requirements). When microwave extraction of additives from a polymer is followed by HPLC analysis, the solvent must be compatible with the HPLC mobile phase so that solvent exchange is not required before analysis. [Pg.57]

One may ask why some experiments, for instance those done by microwave-afterglow technique 15,16 and the experiments by Canosa et al., 21,22 gave no indications of an anomalous decay. In part, the answer may be that small variations of the deionization coefficients are not easily detected in the presence of ambipolar diffusion. They were detected in the work of Adams et al. and of Smith and Spanel only because the diffusion losses were unusually slow in their large flow tube. [Pg.73]

The metal content analysis of the samples was effected by Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES Varian Liberty II Instrument) after microwaves assisted mineralisation in hydrofluoric/hydrochloric acid mixture. Ultraviolet and visible diffuse reflectance spectroscopy (UV-Vis DRS) was carried out in the 200-900 nm range with a Lambda 40 Perkin Elmer spectrophotometer with a BaS04 reflection sphere. HF was used as a reference. Data processing was carried out with Microcal Origin 7.1 software. [Pg.286]

Durable changes of the catalytic properties of supported platinum induced by microwave irradiation have been also recorded [29]. A drastic reduction of the time of activation (from 9 h to 10 min) was observed in the activation of NaY zeolite catalyst by microwave dehydration in comparison with conventional thermal activation [30]. The very efficient activation and regeneration of zeolites by microwave heating can be explained by the direct desorption of water molecules from zeolite by the electromagnetic field this process is independent of the temperature of the solid [31]. Interaction between the adsorbed molecules and the microwave field does not result simply in heating of the system. Desorption is much faster than in the conventional thermal process, because transport of water molecules from the inside of the zeolite pores is much faster than the usual diffusion process. [Pg.350]

In the main, the original extractive alkylation procedures of the late 1960s, which used stoichiometric amounts of the quaternary ammonium salt, have now been superseded by solid-liquid phase-transfer catalytic processes [e.g. 9-13]. Combined soliddiquid phase-transfer catalysis and microwave irradiation [e.g. 14-17], or ultrasound [13], reduces reaction times while retaining the high yields. Polymer-supported catalysts have also been used [e.g. 18] and it has been noted that not only are such reactions slower but the order in which the reagents are added is important in order to promote diffusion into the polymer. [Pg.234]


See other pages where Microwave diffusers is mentioned: [Pg.86]    [Pg.1215]    [Pg.86]    [Pg.1215]    [Pg.450]    [Pg.520]    [Pg.84]    [Pg.86]    [Pg.135]    [Pg.68]    [Pg.802]    [Pg.432]    [Pg.148]    [Pg.69]    [Pg.81]    [Pg.105]    [Pg.112]    [Pg.115]    [Pg.138]    [Pg.182]    [Pg.200]    [Pg.3]    [Pg.29]    [Pg.198]    [Pg.277]    [Pg.361]    [Pg.155]    [Pg.80]    [Pg.471]    [Pg.471]    [Pg.131]    [Pg.145]    [Pg.147]    [Pg.375]    [Pg.376]    [Pg.196]    [Pg.202]    [Pg.215]    [Pg.57]    [Pg.194]   
See also in sourсe #XX -- [ Pg.34 ]




SEARCH



© 2024 chempedia.info