Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microstructure dispersed phases

The particle size of the dispersed phase depends upon the viscosity of the elastomer-monomer solution. Preferably the molecular weight of the polybutadiene elastomer should be around 2 x 10 and should have reasonable branching to reduce cold flow. Furthermore, the microstructure of the elastomer provides an important contribution toward the low-temperature impact behavior of the final product. It should also be emphasized that the use of EPDM rubber [136] or acrylate rubber [137] may provide improved weatherability. It has been observed that with an increase in agitator speed the mean diameter of the dispersed phase (D) decreases, which subsequently levels out at high shear [138-141]. However, reagglomeration may occur in the case of bulk... [Pg.657]

Electrical conductivity is an easily measured transport property, and percolation in electrical conductivity appears a sensitive probe for characterizing microstructural transformations. A variety of field (intensive) variables have been found to drive percolation in reverse microemulsions. Disperse phase volume fraction has been often reported as a driver of percolation in electrical conductivity in such microemulsions [17-20]. [Pg.251]

Lagues et al. [17] found that the percolation theory for hard spheres could be used to describe dramatic increases in electrical conductivity in reverse microemulsions as the volume fraction of water was increased. They also showed how certain scaling theoretical tools were applicable to the analysis of such percolation phenomena. Cazabat et al. [18] also examined percolation in reverse microemulsions with increasing disperse phase volume fraction. They reasoned the percolation came about as a result of formation of clusters of reverse microemulsion droplets. They envisioned increased transport as arising from a transformation of linear droplet clusters to tubular microstructures, to form wormlike reverse microemulsion tubules. [Pg.251]

Several unifying conclusions may be based upon the order parameter results illustrated here for microstructural transitions driven by three different field variables, (1) disperse phase volume fraction, (2) temperature, and (3) chemical potential. It appears that the onset of percolating cluster formation may be experimentally and quantitatively distinguished from the onset of irregular bicontinuous structure formation. It also appears that... [Pg.261]

Two main microemulsion microstructures have been identified droplet and biconti-nuous microemulsions (54-58). In the droplet type, the microemulsion phase consists of solubilized micelles reverse micelles for w/o systems and normal micelles for the o/w counterparts. In w/o microemulsions, spherical water drops are coated by a monomolecular film of surfactant, while in w/o microemulsions, the dispersed phase is oil. In contrast, bicontinuous microemulsions occur as a continuous network of aqueous domains enmeshed in a continuous network of oil, with the surfactant molecules occupying the oil/water boundaries. Microemulsion-based materials synthesis relies on the availability of surfactant/oil/aqueous phase formulations that give stable microemulsions (54-58). As can be seen from Table 2.2.1, a variety of surfactants have been used, as further detailed in Table 2.2.2 (16). Also, various oils have been utilized, including straight-chain alkanes (e.g., n-decane, /(-hexane),... [Pg.155]

The non-aqueous HIPEs showed similar properties to their water-containing counterparts. Examination by optical microscopy revealed a polyhedral, poly-disperse microstructure. Rheological experiments indicated typical shear rate vs. shear stress behaviour for a pseudo-plastic material, with a yield stress in evidence. The yield value was seen to increase sharply with increasing dispersed phase volume fraction, above about 96%. Finally, addition of water to the continuous phase was studied. This caused a decrease in the rate of decay of the emulsion yield stress over a period of time, and an increase in stability. The added water increased the strength of the interfacial film, providing a more efficient barrier to coalescence. [Pg.188]

By far the most studied PolyHIPE system is the styrene/divinylbenzene (DVB) material. This was the main subject of Barby and Haq s patent to Unilever in 1982 [128], HIPEs of an aqueous phase in a mixture of styrene, DVB and nonionic surfactant were prepared. Both water-soluble (e.g. potassium persulphate) and oil-soluble (2,2 -azo-bis-isobutyronitrile, AIBN) initiators were employed, and polymerisation was carried out by heating the emulsion in a sealed plastic container, typically for 24 hours at 50°C. This yielded a solid, crosslinked, monolithic polymer material, with the aqueous dispersed phase retained inside the porous microstructure. On exhaustive extraction of the material in a Soxhlet with a lower alcohol, followed by drying in vacuo, a low-density polystyrene foam was produced, with a permanent, macroporous, open-cellular structure of very high porosity (Fig. 11). [Pg.190]

Alany et al. [11,35] reported on the phase behavior of two pharmaceutical ME systems showing interesting viscosity changes. The viscosity of both systems increased with increasing volume fraction of the dispersed phase to 0.15 and flow was Newtonian. However, formation of LC in one of the two systems, namely the cosurfac-tant-free system, resulted in a dramatic increase in viscosity that was dependent on the volume fraction of the internal phase and a change to pseudoplastic flow. In contrast, the viscosity of the bicontinuous ME was independent of water volume fraction. The authors used two different mathematical models to explain the viscosity results and related those to the different colloidal microstructures described. [Pg.779]

T Vispersions of acrylic polymer beads in rapidly polymerizable liquids are important biomaterials (I, 2). The biocompatibility and functionality of dental restoratives, dental prostheses, and surgical prostheses depend on the mechanical properties of these biopolymers as well as on their physical and chemical constitution. This investigation was part of a continuing program to determine the influence of microstructural parameters on the mechanical properties of these multiphase systems. The effects of the volume fractions of dispersed phase and matrix, molecular weight of the matrix, chain length and concentration of crosslinkers, impact modifiers, and filler were studied in terms of microstructure, hard-... [Pg.295]

The mechanical properties of rapidly polymerizing acrylic dispersions, in simulated bioconditions, were directly related to microstructural characteristics. The volume fraction of matrix, the crosslinker volume in the matrix, the particle size distribution of the dispersed phase, and polymeric additives in the matrix or dispersed phase were important microstructural factors. The mechanical properties were most sensitive to volume fraction of crosslinker. Ten percent (vol) of ethylene dimethacrylate produced a significant improvement in flexural strength and impact resistance. Qualitative dynamic impact studies provided some insight into the fracture mechanics of the system. A time scale for the elastic, plastic, and failure phenomena in Izod impact specimens was qualitatively established. The time scale and rate sensitivity of the phenomena were correlated with the fracture surface topography and fracture geometry in impact and flexural samples. [Pg.303]

Blends. There has been considerable research in recent years on polymer blends that contain an LCP. This subject was recently reviewed by Dutta et al. (67). The addition of an LCP to another thermoplastic melt effectively lowers the melt viscosity and improves processability. In addition, if the flow field contains an extensional stress component, the LCP dispersed phase is extended into a fibrous morphology and oriented in the flow direction. This microstructure can be retained in the solidified blend to provide self-reinforcement. [Pg.12]

Let us consider the three additional examples just mentioned. First, we need to identify the features, in each case, that define the microstructural state. In the case of the emulsion or blend, the most important microscale feature that can be influenced by the flow is the orientation and shape of the disperse-phase bubbles or drops (the mean drop size and drop-size distribution will also generally be important and can be influenced by flow-induced drop breakup and coalescence events, but we will ignore this extra complication for purposes of our current discussion). At equilibrium, the drops will be spherical and the microstructure isotropic. For polymeric liquids, it is the statistical configuration of the polymer molecules... [Pg.57]

Mayonnaise (Figure 2.21) is an OAV emulsion consisting of 50 to 85% edible oil, 5 to 10% egg yolk, vinegar, salt, and seasonings. The emulsion is stabilized by egg yolk phospholipids. Tung and Jones (1981) studied the mayonnaise microstructure by conventional SEM and observed a high concentration of dispersed phase... [Pg.34]

Experimental study of blend miscibility or compatibility is more difficult for polymeric materials than for small molecules, because the heat of mixing (A/Z ) is very small for polymers and is nearly impossible to measure directly. Because of the microscopic size of the dispersed phase, it is necessary to use special techniques to measure morphology on that very small scale. A brief sampling of the most important techniques used to study blend microstructure is offered below [6]. [Pg.509]


See other pages where Microstructure dispersed phases is mentioned: [Pg.143]    [Pg.203]    [Pg.653]    [Pg.251]    [Pg.253]    [Pg.254]    [Pg.257]    [Pg.258]    [Pg.195]    [Pg.40]    [Pg.209]    [Pg.52]    [Pg.229]    [Pg.445]    [Pg.465]    [Pg.659]    [Pg.195]    [Pg.234]    [Pg.303]    [Pg.100]    [Pg.1851]    [Pg.1635]    [Pg.404]    [Pg.713]    [Pg.73]    [Pg.274]    [Pg.242]    [Pg.244]    [Pg.245]    [Pg.248]    [Pg.249]    [Pg.208]    [Pg.543]   
See also in sourсe #XX -- [ Pg.343 ]




SEARCH



Disperse phase

Dispersive phase

Phase dispersion

© 2024 chempedia.info