Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microreactors for Catalytic Gas-Phase Reactions

A major problem in using microstructured reactors for heterogeneously catalyzed gas-phase reactions is how to introduce the catalytic active phase. The possibilities are to (i) introduce the solid catalyst in the form of a micro-sized packed bed, (ii) use a catalytic wall reactor or (iii) to use novel designs. Kiwi-Minsker and Renken [160] have discussed in detail these alternatives. [Pg.245]

To avoid high-pressure drop and clogging problems in randomly packed micro-structured reactors, multichannel reactors with catalytically active walls were proposed. The main problem is how to deposit a uniform catalyst layer in the microchannels. The thickness and porosity of the catalyst layer should also be enough to guarantee an adequate surface area. It is also possible to use methods of in situ growth of an oxide layer (e.g., by anodic oxidation of a metal substrate [169]) to form a washcoat of sufficient thickness to deposit an active component (metal particles). Suzuki et al. [170] have used this method to prepare Pt supported on nanoporous alumina obtained by anodic oxidation and integrate it into a microcatalytic combustor. Zeolite-coated microchannel reactors could be also prepared and they demonstrate higher productivity per mass of catalyst than conventional packed beds [171]. Also, a MSR where the microchannels are coated by a carbon layer, could be prepared [172]. [Pg.246]

An alternative to filling or coating with a catalyst layer the microcharmels, with the related problems of avoiding maldistribution, which leads to a broad residence time distribution (RTD), is to create the microchannels between the void space left from a close packing of parallel filaments or wires. This novel MSR concept has been applied for the oxidative steam reforming of methanol [173]. Thin linear metallic wires, with diameters in the millimeter range, were close packed and introduced into a macro tubular reactor. The catalyst layer was grown on the external surface of these wires by thermal treatment. [Pg.246]


This section starts with a classification of phase-contacting principles according to the type of catalytic bed. Advantages and disadvantages of the reactor types are explained, followed by a discussion of criteria for reactor selection and an overview of purchasable microreactors for catalytic gas-phase reactions. [Pg.1060]


See other pages where Microreactors for Catalytic Gas-Phase Reactions is mentioned: [Pg.245]   


SEARCH



Catalytic Microreactors

Catalytic gas-phase reactions

Catalytic phase

For catalytic reactions

Gas phase reactions

Microreactor catalytic

Microreactors for catalytic reactions

© 2024 chempedia.info