Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microporous oxide architectures

The inherent limitations of the use of zeolites as catalysts, i.e. their small pore sizes and long diffusion paths, have been addressed extensively. Corma reviewed the area of mesopore-containing microporous oxides,[67] with emphasis on extra-large pore zeolites and pillared-layered clay-type structures. Here we present a brief overview of different approaches to overcoming the limitations regarding the accessibility of catalytic sites in microporous oxide catalysts. In the first part, structures with hierarchical pore architectures, i.e. containing both microporous and mesoporous domains, are discussed. This is followed by a section on the modification of mesoporous host materials with nanometre-sized catalytically active metal oxide particles. [Pg.13]

Amorphous Sn-, Si-, and Al-containing mixed oxides with homogeneous elemental distribution, elemental domains, and well-characterized pore architecture, including micropores and mesopores, can be prepared under controlled conditions by use of two different sol-gel processes. Sn-Si mixed oxides with low Sn content are very active and selective mild acid catalysts which are useful for esterification and etherification reactions [121]. These materials have large surface areas, and their catalytic activity and selectivity are excellent. In the esterification reaction of pentaerythritol and stearic acid catalytic activity can be correlated with surface area and decreasing tin content. The trend of decreasing tin content points to the potential importance of isolated Sn centers as active sites. [Pg.427]

Advancements in the preparation of new PLS s nearly parallels that of the zeolite and zeolite-like phases. Initially the pillared smectite clays were investigated but the quest for new materials with new properties led to e qiloring the pillaring of other layered phases. These include, most notably, the layered zirconium phosphates, double hydroxides (hydrotalcites), sihcas and metal oxides. The parallel paths of discovery in new material compositions for the layered phases and the microporous (zeoUte) phases are summarized in Table 1. A conq>arison between the pore architectures of the zeohtes and the two dimensional PLS is shown in Table 2. [Pg.13]

The regular crystal structures of microporous solids have led, directly and indirectly, to their widespread study and application. The starting point in understanding their behaviour is the architecture of the repeat unit, or unit cell, which controls their properties. The well-defined pore size permits discrimination between molecules (and transition states in catalytic reactions) to better than 0.1 A activities for oxidation and solid acid catalysis are determined by the structural constraints on the local environments of framework cations and protons within the structure and the regular distribution of extra-framework, charge-balancing cations is responsible for cation exchange and gas adsorption and separation behaviour. [Pg.79]


See other pages where Microporous oxide architectures is mentioned: [Pg.11]    [Pg.10]    [Pg.1507]    [Pg.216]    [Pg.1506]    [Pg.10]    [Pg.773]    [Pg.29]    [Pg.667]    [Pg.35]   
See also in sourсe #XX -- [ Pg.21 ]




SEARCH



Oxidation architectures

© 2024 chempedia.info