Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric microphases

The second front originates in the polymer synthesis community. Efforts are mainly directed toward production of monodisperse block copolymers by living polymerizations. These stmctures typically result in microphase separated systems if one block is a high T material and the other is elastomeric in... [Pg.188]

As has been described in Chapter 4, random copolymers of styrene (St) and 2-(acrylamido)-2-methylpropanesulfonic acid (AMPS) form a micelle-like microphase structure in aqueous solution [29]. The intramolecular hydrophobic aggregation of the St residues occurs when the St content in the copolymer is higher than ca. 50 mol%. When a small mole fraction of the phenanthrene (Phen) residues is covalently incorporated into such an amphiphilic polyelectrolyte, the Phen residues are hydrophobically encapsulated in the aggregate of the St residues. This kind of polymer system (poly(A/St/Phen), 29) can be prepared by free radical ter-polymerization of AMPS, St, and a small mole fraction of 9-vinylphenanthrene [119]. [Pg.84]

Methyl-l,10-undecadiene, ADMET polymerization of, 442 Michaelis-Menten enzymatic kinetics, 84 Microbial hydrolysis, 43 Microcellular elastomers, 204-205 Microphase-separated block copolymers, 6-7... [Pg.589]

ABA type poly(hydroxyethyl methacrylate) (HEMA) and PDMS copolymers were synthesized by the coupling reactions of preformed a,co-isocyanate terminated PDMS oligomers and amine-terminated HEMA macromonomers312). Polymerization reactions were conducted in DMF solution at 0 °C. Products were purified by precipitation in diethyl ether to remove unreacted PDMS oligomers. After dissolving in DMF/toluene mixture, copolymers were reprecipitated in methanol/water mixture to remove unreacted HEMA oligomers. Microphase separated structures were observed under transmission electron microscope, using osmium tetroxide stained thin copolymer films. [Pg.45]

The synthesis of well defined block copolymers exhibiting controlled molecular weight, low compositional heterogeneity and narrow molecular weight distribution is a major success of anionic polymerization techniques 6,7,14-111,112,113). Blocks of unlike chemical nature have a general tendency to undergo microphase separation, thereby producing mesomorphic phases. Block copolymers therefore exhibit unique properties, that prompted numerous studies and applications (e.g. thermoplastic elastomers). [Pg.164]

Recently, Kroeze et al. prepared polymeric iniferter 34 including poly(BD) segments in the main chain [152]. They successfully synthesized poly(BD)-block-poly(SAN), which was characterized by gel permeation chromatography, elemental analysis, thermogravimetric analysis, NMR, dynamic mechanical thermal analysis, and transmission electron microscopy. By varying the polymerization time and iniferter concentration, the composition and the sequence length were controlled. The analysis confirmed the chain microphase separation in the multiblock copolymers. [Pg.94]

Predicting the characteristic sizes and morphologies of these nanostructures has been an intense topic of investigation from both the theoretical and experimental points of view. Critical parameters are the degree of polymerization and the volume fraction of the constituent blocks, as well as the Flory-Huggins parameter between them. More complete information about microphase separated structures in bulk block copolymers can be found in the book of Hamley [2],... [Pg.80]

Various types of well-defined block copolymers containing polypropylene segments have been synthesized by Doi et al. on the basis of three methods (i) sequential coordination polymerization of propylene and ethylene 83-m>, (ii) transformation of living polypropylene ends to radical or cationic ones which initiate the polymerization of polar monomers 104, u2i, and (iii) coupling reaction between iodine-terminated monodisperse polypropylene and living polystyrene anion 84). In particular, the well-defined block copolymers consisting of polypropylene blocks and polar monomer unit blocks are expected to exhibit new characteristic properties owing to the effect of microphase separation. [Pg.236]

In mean field theory, two parameters control the phase behavior of diblock copolymers the volume fraction of the A block /A, and the combined interaction parameter xTak- V. where Xab is the Flory-Huggins parameter that quantifies the interaction between the A and B monomers and N is the polymerization index [30], The block copolymer composition determines the microphase morphology to a great extent. For example, comparable volume fractions of block copolymer components result in lamella structure. Increasing the degree of compositional asymmetry leads to the gyroid, cylindrical, and finally, spherical phases [31]. [Pg.36]


See other pages where Polymeric microphases is mentioned: [Pg.154]    [Pg.260]    [Pg.189]    [Pg.710]    [Pg.201]    [Pg.27]    [Pg.51]    [Pg.260]    [Pg.290]    [Pg.120]    [Pg.10]    [Pg.22]    [Pg.31]    [Pg.144]    [Pg.77]    [Pg.10]    [Pg.154]    [Pg.189]    [Pg.394]    [Pg.8]    [Pg.15]    [Pg.18]    [Pg.158]    [Pg.158]    [Pg.276]    [Pg.85]    [Pg.4]    [Pg.25]    [Pg.332]    [Pg.364]    [Pg.374]    [Pg.375]    [Pg.385]    [Pg.385]    [Pg.402]    [Pg.43]    [Pg.407]    [Pg.38]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Microphase

Microphases

© 2024 chempedia.info