Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microparticles fluorescent

Axelrod D, Hellen EH, Fulbight RM (1992) Microparticle fluorescence. In Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 3, Biochemical applications. Plenum, New York, pp 289-343... [Pg.189]

The original polymeric latex particles still are widely used for separation and detection. Polymers provide a matrix that can be swollen for embedding other molecules in their core, such as organic dyes or fluorescent molecules. Even nanoparticle quantum dots can be incorporated into larger latex particles to form highly fluorescent composite microparticles. [Pg.583]

Fig. 31 (A) Principle of a sandwich immunoassay using FDA particulate labels. The analyte is first immobilized by the capture antibody preadsorbed on the solid phase (a) and then exposed to antibody-coated microparticle labels (b). Every microparticle contains 108 FDA molecules. High signal amplification is achieved after solubilisation, release, and conversion of the precursor FDA into fluorescein molecules by the addition of DMSO and NaOH (c). (B) Calibration curves of IgG-FDA microcrystal labels with increasing surface coverage of detector antibody (a-d) compared with direct FITC-labeled detector antibody (e). The fluorescence signals increase with increasing IgG concentration. FDA microcrystals with a high IgG surface coverage (c,d) perform better than those with lower surface coverage (a,b). (Reprinted with permission from [189]. Copyright 2002 American Chemical Society)... Fig. 31 (A) Principle of a sandwich immunoassay using FDA particulate labels. The analyte is first immobilized by the capture antibody preadsorbed on the solid phase (a) and then exposed to antibody-coated microparticle labels (b). Every microparticle contains 108 FDA molecules. High signal amplification is achieved after solubilisation, release, and conversion of the precursor FDA into fluorescein molecules by the addition of DMSO and NaOH (c). (B) Calibration curves of IgG-FDA microcrystal labels with increasing surface coverage of detector antibody (a-d) compared with direct FITC-labeled detector antibody (e). The fluorescence signals increase with increasing IgG concentration. FDA microcrystals with a high IgG surface coverage (c,d) perform better than those with lower surface coverage (a,b). (Reprinted with permission from [189]. Copyright 2002 American Chemical Society)...
Fig. 6 (a) Schematic illustration of a flow cytometer used in a suspension array. The sample microspheres are hydrodynamically focused in a fluidic system and read-out by two laser beams. Laser 1 excites the encoding dyes and the fluorescence is detected at two wavelengths. Laser 2 is used to quantify the analyte, (b) Scheme of randomly ordered bead array concept. Beads are pooled and adsorbed into the etched wells of an optical fiber, (c) Scheme of randomly-ordered sedimentation array. A set of encoded microspheres is added to the analyte solution. Subsequent to binding of the analyte, microparticles sediment and assemble at the transparent bottom of a sample tube generating a randomly ordered array. This array is evaluated by microscope optics and a CCD-camera. Reproduced with permission from Refs. [85] and [101]. Copyright 1999, 2008 American Chemical Society... [Pg.216]

Whenever the commercially available particles do not match the operator s requirements, a variety of possibilities exist in order to modify the particles from company suppliers. Similarly to other doped beads the dyes [92] or quantum dots [107, 108] can be physically entrapped into magnetic beads by swelling or are covalently bound to the surface of the particles. If localization of the dye on the particle surface is desired or if the polarity of dye and/or matrix polymer does not allow the irreversible entrapment of the dye in the bulk polymer, a covalent attachment of the dye is preferable [109, 110]. Even the covalent binding of whole fluorescent nanoparticles to magnetic microparticles is possible, as shown by Kinosita and co-workers who investigated the rotation of molecular motors [111]. [Pg.219]

Henry MR, Wilkins Stevens P, Sun J, Kelso DM (1999) Real-time measurements of DNA hybridization on microparticles with fluorescence resonance energy transfer. Anal Biochem 276 204-214... [Pg.226]

To overcome the nonspecific interactions between ssDNA-C and CCP, Fan et al. introduced a magnetic microparticle assisted assay [54], which allows DNA detection in human serum with 0.1 nM sensitivity. In addition, DNA intercalating dyes were introduced for DNA detection as shown in Scheme 5. These special dyes have much higher fluorescence quantum yields upon intercalation with dsDNA relative to those in the presence of ssDNA or in their free states. As a result, when complementary ssDNA strands (target and probe) are present, the intercalating dye... [Pg.425]

The Abbott IMx , a dedicated commercial immunoassay analyzer that employs FPIAs for small molecules, can also determine larger analytes by a fluorescence-based microparticle capture enzyme immunoassay (MEIA).(44) In this system, antibody-coated0.47- mlatexparticles are used for both sandwich and competitive assays, and alkaline phosphatase conjugates that bind to the particles cleave 4-methylumbelliferyl phosphate to generate the fluorophore. [Pg.465]

S. Arnold and L. M. Folan, Fluorescence spectrometer for a single electrodynamically levitated microparticle, Rev. Sci. Instrum 57, 2250-2253 (1986). [Pg.384]

We have seen that the electrical field associated with electromagnetic radiation plays an important role in elastic scattering and in microparticle heating. It plays a no less important role in the inelastic scattering processes of fluorescence and Raman spectroscopy, which we examine next. [Pg.47]

Another example of a delivery system based on microbubbles and ultrasound is the delivery of circulating microparticles (polymer latex beads) or fluorescent red blood cells outside of the capillaries into the surrounding tissues by the action of ultrasound on the co-injected Optison microbubbles [79]. Interestingly, polymer beads and red blood cells could be detected tens of micrometers away from the capillaries where the bubble destruction took place. This may imply that during rapid destruction of a microbubble in a very strong ultrasound field, adjacent microsphere beads in the bloodstream can be propelled deep into the surrounding tissues. [Pg.97]

Morphology dependent resonances (MDR) are observed in the fluorescence of 9-amino acridine hydrochloride hydrate (9AAHH) impregnated single microparticles. These MDRs influence the radiative rate of the molecule. From the time-resolved measurement with a resolution of ns we have determined the femtosecond dephasing time of the molecule in a polymer matrix at room temperature. [Pg.549]

However, a study of a few dyes of higher fluorescence quantum yield in polymer microparticles did not show any change in the fluorescence lifetime even though the modification of the fluorescence spectra was observed [4]. In this work, a new molecule (9-amino acridine hydrochloride hydrate, 9AAHH) is reported in which we have observed the effect of MDR in both, the steady state spectra and the fluorescence lifetimes. The dephasing time of 9AAHH in polymer matrix at room temperature have been determined from this study. [Pg.550]


See other pages where Microparticles fluorescent is mentioned: [Pg.345]    [Pg.347]    [Pg.351]    [Pg.353]    [Pg.355]    [Pg.357]    [Pg.359]    [Pg.361]    [Pg.363]    [Pg.365]    [Pg.367]    [Pg.369]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.654]    [Pg.345]    [Pg.347]    [Pg.351]    [Pg.353]    [Pg.355]    [Pg.357]    [Pg.359]    [Pg.361]    [Pg.363]    [Pg.365]    [Pg.367]    [Pg.369]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.654]    [Pg.520]    [Pg.487]    [Pg.47]    [Pg.376]    [Pg.582]    [Pg.1226]    [Pg.150]    [Pg.337]    [Pg.461]    [Pg.345]    [Pg.345]    [Pg.368]    [Pg.49]    [Pg.49]   
See also in sourсe #XX -- [ Pg.2 , Pg.15 ]




SEARCH



Microparticle

Microparticles

© 2024 chempedia.info