Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael additions chiral acceptors

The second strategy to achieve the asymmetric protonation of double bonds through a conjugate addition is based on the use of a chiral proton source. This last strategy mainly focuses on the use of organocatalysts. This concept introduced by Pracejus et al. in 1977 in the course of thia-Michael addition to acceptor 98, mainly uses protic nucleophiles with low pKa such as thiol, a-ketoester, a-cyanoester, or secondary phosphine oxyde. ... [Pg.978]

When chiral enolates or chiral Michael acceptors are used, for instance, when stereogenic centers are present in the substrate or when X or Y are chiral auxiliaries, both simple and induced diastereoselectivity is observed. This results, in principle, in the formation of four diastereomers 1 -4. The diastereoselectivity in the Michael addition of lithium enolates to enones can be rationalized by consideration of chelated transition states A-D372. [Pg.954]

During the coverage period of this chapter, reviews have appeared on the following topics reactions of electrophiles with polyfluorinated alkenes, the mechanisms of intramolecular hydroacylation and hydrosilylation, Prins reaction (reviewed and redefined), synthesis of esters of /3-amino acids by Michael addition of amines and metal amides to esters of a,/3-unsaturated carboxylic acids," the 1,4-addition of benzotriazole-stabilized carbanions to Michael acceptors, control of asymmetry in Michael additions via the use of nucleophiles bearing chiral centres, a-unsaturated systems with the chirality at the y-position, and the presence of chiral ligands or other chiral mediators, syntheses of carbo- and hetero-cyclic compounds via Michael addition of enolates and activated phenols, respectively, to o ,jS-unsaturated nitriles, and transition metal catalysis of the Michael addition of 1,3-dicarbonyl compounds. ... [Pg.419]

When nitroalkenes were used as Michael acceptors, high yields and enantioselectivities of the desired Michael addition products were also obtained (Scheme 5.22). In these reactions, a well-defined chiral Ru amido complex (Figure 5.9) was an efficient catalyst. The mild reaction conditions and high reactivities and stereoselectivities allowed a large-scale reaction in the presence 1 mol% Ru catalyst. By using a chiral Pd(II) catalyst, an asymmetric allylic arylation was reported by Mikami and coworkers to give the cross-couphng product via the activation of both allylic C H and aryl C H bonds in moderate enantioselectivity (Scheme 5.23). ... [Pg.141]

High diastereofacial selectivities are observed in cycloadditions and Michael additions with ot,(3-unsaturated esters having chiral heterocyclic auxiliary at the p-position, as shown in Schemes 11.20, 11.21, and 11.25, and cannot be well-explained using Kozikowski s awfi-periplanar model (124,125) or Houk s inside alkoxy model (126,127). Both the anti-periplanar conformation and the syn-periplanar conformation of the acceptors participate in the transition structures, depending on nonbonding interactions in the dipole-chiral auxiliary pair (121). [Pg.778]

During our investigations on asymmetric C—C bond formation reactions via conjugate addition of SAMP hydrazones to various a,(3-unsaturated Michael acceptors, it occurred to us to use the chiral hydrazine auxiliary S AM P as a nitrogen nucleophile and a chiral equivalent of ammonia in aza-Michael additions. Thus, we developed diastereo- and enantioselective 1,4-additions for the synthesis of P-amino acids and P-aminosulfonates [14, 15]. [Pg.5]

Sulfones have become increasingly important in organic synthesis in recent years and a, P-unsaturated sulfones especially are known to be excellent Michael acceptors. Following our concept of using SAMP derivatives as chiral equivalents of ammonia, the enantioselective aza-Michael addition has been investigated in order to provide a new method for the synthesis of P-aminosulfones [15]. [Pg.9]

The conjugate addition of phosphorus nucleophiles of various oxidation states and in neutral or metallated form constitutes an efficient and well-known method for C—P bond formation [30]. In the case of phosphanes as nucleophiles especially, the corresponding phosphane-borane adducts have been used in 1,4-additions to Michael acceptors. Following the idea to use a chirally modified phosphorus nucleophile in asymmetric Michael additions to aromatic nitroalkenes, we synthesized the new enantiopure phospite 45 starting from TADDOL (44) with nearly quantitative yield. Due to the C2 symmetry, of the... [Pg.11]

Another type of chiral Michael acceptor, the oxazepine derivatives (47), is prepared by condensation of the (-)-ephedrine-derived malonic acid derivative (46) with aldehydes (Scheme 18).51 52 Treatment of (47) with a variety of Grignard reagents in the presence of NiCh affords, after hydrolysis and decarboxylation, the 3-substituted carboxylic acids (48), in most cases with more than 90% ee. Diastereoselective Michael additions to (47) were also used for the preparation of optically active cyclopropane derivatives (49)53 and P-substituted-y-butyrolactones (50 Scheme 18).54 A total synthesis of indolmycin is based on this methodology.55... [Pg.206]

The chiral, nonracemic oxazepine derivative (46 Scheme 18) was studied as donor in the Michael addition to prochiral a,p-unsaturated carbonyl compounds.134-133 The products were obtained with 44-55% ee after removal of the chiral auxiliary group. With 1-nitrocyclohexene as acceptor, somewhat better se-lectivities (62% ee) were observed.136... [Pg.218]

A highly selective method for the preparation of optically active 3-substituted or 3, y-disubstituted-S-keto esters and related compounds is based on asymmetric Michael additions of chiral hydrazones (156), derived from (5)-l-amino-2-methoxymethylpyrrolidine (SAMP) or its enantiomer (RAMP), to unsaturated esters (154).167-172 Overall, a carbonyl compound (153) is converted to the Michael adduct (155) as outlined in Scheme 55. The actual asymmetric 1,4-addition of the lithiated hydrazone affords the adduct (157) with virtually complete diastereoselection in a variety of cases (Table 3). Some of the products were used for the synthesis of pheromones,169 others were converted to 8-lactones.170 The Michael acceptor (158) also reacts selectively with SAMP hydrazones.171 Tetrahydroquinolindiones of type (159) are prepared from cyclic 1,3-diketones via SAMP derivatives like (160), as indicated in Scheme 56.172... [Pg.222]

Chiral crown ether phosphine-palladium complexes have been used to catalyse the alkylation of carbanions derived from a-nitro ketones and a-nitro esters,63 and proline rubidium salts have been used to catalyse asymmetric Michael addition of nitroalkanes to prochiral acceptors 64 80% enantioselectivity can be achieved in each case. [Pg.339]

Enantioselective Michael addition of glycine derivatives by means of chiral phase-transfer catalysis has been developed to synthesize various functionalized a-alkyl-a-amino acids. Corey utilized 4d as catalyst for asymmetric Michael addition of glycinate Schiff base 1 to a,(3-unsaturated carbonyl substrates with high enantioselectivity (Scheme 2.15) [35,36]. With methyl acrylate as an acceptor, the a-tert-butyl-y-methyl ester of (S)-glutamic acid can be produced, a functionalized glutamic acid... [Pg.22]

As mentioned above, the enantioselective Michael addition of P-keto esters to a,P-unsaturated carbonyl compounds represents a useful method for the construction of densely functionalized chiral quaternary carbon centers. One characteristic feature of designer chiral phase-transfer catalyst lh in this type of transformation is that it enables the use of a,p-unsaturated aldehydes as an acceptor, leading to the... [Pg.103]

Akiyama s group employed naturally occurring L-quebrachitol 6 to prepare the C2-symmetrical 18-membered chiral crown ether 7 [14]. Compound 7 was found to be an active catalyst for the enantioselective Michael additions of glycine enolates. Thus, deprotonation of ester 8 using potassium tert-butoxide in dichloromethane (DCM) in the presence of crown ether 7 (20 mol %), followed by addition of a Michael acceptor, gave amino-acid derivatives 9 with up to 96% ee, as shown in Scheme 8.4. [Pg.164]

Further applications of the chiral ammonium bifluoride-catalyzed enantioselective Michael addition of silyl nitronates has been shown in the reactions with nitroalkenes as a Michael acceptor (Scheme 9.17). These studies were started by examining the reaction of nitropropane-derived silyl nitronate 23b with P-nitrostyrene, using the chiral quaternary ammonium bifluoride (R,.R)-6d. When P-nitrostyrene was treated with 23b (1.2 equiv.) in the presence of (K,f )-6d (2mol%) in THF at — 78 °C, the... [Pg.202]

In the Michael-addition, a nucleophile Nu is added to the / -position of an a,fi-unsaturated acceptor A (Scheme 4.1) [1], The active nucleophile Nu is usually generated by deprotonation of the precursor NuH. Addition of Nu to a prochiral acceptor A generates a center of chirality at the / -carbon atom of the acceptor A. Furthermore, the reaction of the intermediate enolate anion with the electrophile E+ may generate a second center of chirality at the a-carbon atom of the acceptor. This mechanistic scheme implies that enantioface-differentiation in the addition to the yfi-carbon atom of the acceptor can be achieved in two ways (i) deprotonation of NuH with a chiral base results in the chiral ion pair I which can be expected to add to the acceptor asymmetrically and (ii) phase-transfer catalysis (PTC) in which deprotonation of NuH is achieved in one phase with an achiral base and the anion... [Pg.45]

The catalytic enantioselective addition of aromatic C - H bonds to alkenes would provide a simple and attractive method for the formation of optically active aryl substituted compounds from easily available starting materials. The first catalytic, highly enantioselective Michael addition of indoles was reported by Jorgensen and coworkers. The reactions used a,fl-unsaturated a-ketoesters and alkylidene malonates as Michael acceptors catalyzed by the chiral bisoxazoline (BOX)-metal(II) complexes as described in Scheme 27 [98,99]. [Pg.18]

Michael Addition. Titanium imide enolates are excellent nucleophiles in Michael reactions. Michael acceptors such as ethyl vinyl ketone, Methyl Acrylate, Acrylonitrile, and f-butyl acrylate react with excellent diastereoselection (eq 21 ). - Enolate chirality transfer is predicted by inspection of the chelated (Z)-enolate. For the less reactive unsaturated esters and nitriles, enolates generated from TiCl3(0-j-Pr) afford superior yields, albeit with slightly lower selectivities. The scope of the reaction fails to encompass p-substituted, a,p-unsaturated ketones which demonstrate essentially no induction at the prochiral center. Furthermore, substimted unsamrated esters do not act as competent Michael acceptors at all under these conditions. [Pg.60]

The thiourea functionality, inserted on the most frequently used chiral pyrrolidine scalTold, works excellently as reactivity and enantioselectivity control co-factor by chelating the nitro group of the acceptor. This solution, adopted in 25, provides a family of robust catalysts that afford high yields (up to 98%) and great stereoselectivities (up to 99 1 dr and 99% ee) in direct Michael additions of ketones to various nitroolefins in water. ... [Pg.20]

Another category of reactive enones is 4-deoxy-l,2-0-isopropylidene-L-glycero-pent-4-enopyrano-3-ulose, originally synthesized by Klemer and Jung (25) and currently explored by us as an extremely useful new chiral building block for stereoselective functionalization reactions, especially as Michael addition acceptors (Scheme 6). [Pg.85]

The catalytic asymmetric Michael addition using chiral amine was first reported by Langstrom and Bergson [6]. Treatment of 2-methoxycarbonyl-l-in-danone (6) and acrolein with 0.03 mol % of partially resolved (i )-2-(hydroxyme-thyl)quinuchdine (5,57% ee) in benzene at room temperature gave optically active adduct, [a]546 ° -1-8.83° (c 6.53, CCI4). It clearly indicated that the cluster formed from the base and the enolate reacted with the acceptor. The enantiomeric excess and the absolute configuration of this compound, however, have not yet been determined. [Pg.1060]


See other pages where Michael additions chiral acceptors is mentioned: [Pg.119]    [Pg.329]    [Pg.272]    [Pg.890]    [Pg.776]    [Pg.623]    [Pg.27]    [Pg.30]    [Pg.230]    [Pg.46]    [Pg.321]    [Pg.471]    [Pg.207]    [Pg.514]    [Pg.534]    [Pg.538]    [Pg.60]    [Pg.186]    [Pg.321]    [Pg.293]    [Pg.398]    [Pg.1059]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Addition Acceptors

Additions of Chiral Imide Enolates to Michael Acceptors

Chiral additives

Michael acceptor

Michael addition acceptors

© 2024 chempedia.info