Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael addition reversibility

In the above reaction one molecular proportion of sodium ethoxide is employed this is Michael s original method for conducting the reaction, which is reversible and particularly so under these conditions, and in certain circumstances may lead to apparently abnormal results. With smaller amounts of sodium alkoxide (1/5 mol or so the so-called catal3rtic method) or in the presence of secondary amines, the equilibrium is usually more on the side of the adduct, and good yields of adducts are frequently obtained. An example of the Michael addition of the latter type is to be found in the formation of ethyl propane-1 1 3 3 tetracarboxylate (II) from formaldehyde and ethyl malonate in the presence of diethylamine. Ethyl methylene-malonate (I) is formed intermediately by the simple Knoevenagel reaction and this Is followed by the Michael addition. Acid hydrolysis of (II) gives glutaric acid (III). [Pg.912]

The addition of large enolate synthons to cyclohexenone derivatives via Michael addition leads to equatorial substitution. If the cyclohexenone conformation is fixed, e.g. as in decalones or steroids, the addition is highly stereoselective. This is also the case with the S-addition to conjugated dienones (Y. Abe, 1956). Large substituents at C-4 of cyclic a -synthons direct incoming carbanions to the /rans-position at C-3 (A.R. Battersby, 1960). The thermodynamically most stable products are formed in these cases, because the addition of 1,3-dioxo compounds to activated double bonds is essentially reversible. [Pg.72]

These reversible reactions are cataly2ed by bases or acids, such as 2iac chloride and aluminum isopropoxide, or by anion-exchange resias. Ultrasonic vibrations improve the reaction rate and yield. Reaction of aromatic aldehydes or ketones with nitroparaffins yields either the nitro alcohol or the nitro olefin, depending on the catalyst. Conjugated unsaturated aldehydes or ketones and nitroparaffins (Michael addition) yield nitro-substituted carbonyl compounds rather than nitro alcohols. Condensation with keto esters gives the substituted nitro alcohols (37) keto aldehydes react preferentially at the aldehyde function. [Pg.100]

Various competitive reactions can reduce the yield of the desired Michael-addition product. An important side-reaction is the 1,2-addition of the enolate to the C=0 double bond (see aldol reaction, Knoevenagel reaction), especially with a ,/3-unsaturated aldehydes, the 1,2-addition product may be formed preferentially, rather than the 1,4-addition product. Generally the 1,2-addition is a kinetically favored and reversible process. At higher temperatures, the thermodynamically favored 1,4-addition products are obtained. [Pg.202]

The intramolecular Michael addition11 of a nucleophilic oxygen to an a,/ -unsaturated ester constitutes an attractive alternative strategy for the synthesis of the pyran nucleus, a strategy that could conceivably be applied to the brevetoxin problem (see Scheme 2). For example, treatment of hydroxy a,/ -unsaturated ester 9 with sodium hydride furnishes an alkoxide ion that induces ring formation by attacking the electrophilic //-carbon of the unsaturated ester moiety. This base-induced intramolecular Michael addition reaction is a reversible process, and it ultimately affords the thermodynamically most stable product 10 (92% yield). [Pg.734]

The enolate of the 1,4-adduct, obtained after the stereoselective Michael addition step, as discussed in the previous sections, may be quenched in situ with various electrophiles. The fact that additional stereogenic centers may be formed via such tandem Michael addition/quench-ing procedures, giving products with high diastereoselectivity in many cases, extends the scope of these methods substantially. Furthermore these procedures occasionally offer the possibility of reversing the syn/anti diastereoselection. In the next sections pertinent examples of diastereoselective inter- and intramolecular quenching reactions will be discussed. [Pg.992]

Jenner investigated the kinetic pressure effect on some specific Michael and Henry reactions and found that the observed activation volumes of the Michael reaction between nitromethane and methyl vinyl ketone are largely dependent on the magnitude of the electrostriction effect, which is highest in the lanthanide-catalyzed reaction and lowest in the base-catalyzed version. In the latter case, the reverse reaction is insensitive to pressure.52 Recently, Kobayashi and co-workers reported a highly efficient Lewis-acid-catalyzed asymmetric Michael addition in water.53 A variety of unsaturated carbonyl derivatives gave selective Michael additions with a-nitrocycloalkanones in water, at room temperature without any added catalyst or in a very dilute aqueous solution of potassium carbonate (Eq. 10.24).54... [Pg.323]

The reaction with the siloxy derivative 29 is an interesting example because the product 30 is a 1,5-dicarbonyl derivative (Equation (36)).96 1,5-Dicarbonyls are classically prepared by a Michael addition, but the synthesis of 30 by a Michael addition is not possible because it would require addition to the keto form of 1-naphthol. The acetoxy derivative 31 resulted in a different outcome, leading to the direct synthesis of the naphthalene derivative 32 (Equation (37)).96 In this case, the combined C-H activation/Cope rearrangement intermediate was aromatized by elimination of acetic acid before undergoing a reverse Cope rearrangement. [Pg.180]

In principle, the synthesis of a consonant molecule or a bifunctional relationship within a more complex polyfunctional molecule, does not offer too many difficulties. In fact, all the classical synthetic methods of carbon-carbon bond formation that utilise reactions which are essentially reversible, lead to consonant relationships. For instance, the book by H.O. House "Modem Synthetic Reactions" [22], after dealing, for almost 500 pages, with functional group manipulations, devotes the last 350 pages to carbon-carbon bond formation, all of which lead to consonant relationships. These methods can, actually, be reduced to the following four classical condensations (and their variants) Claisen condensation, aldol condensation, Mannich condensation and Michael addition (Table 2.5). [Pg.53]

It should be noted here that a regioselective control may also be exerted by just controlling the experimental conditions. Thus, working under strictly kinetic conditions (low temperature, absence of oxygen and slow addition of the ketone to an excess of a solution of an aprotic base) the less substituted enolate of carvomenthone can also be selectively generated and may be then submitted to different kind of reactions. However, reversible reactions like the Michael addition would equilibrate the reaction mixture to the thermodynamically more stable enolate. [Pg.326]

Shi, B. Greaney, M. F. Reversible Michael addition of thiols as a new tool for dynamic combinatorial chemistry. Chem. Commun. 2005, 886-888. [Pg.82]

There is no published example of a cyclopropanation of the double bond in chlorocyclopropylideneacetate 1-Me with retention of the chlorine atom. Thus, attempted cyclopropanations under Simmons-Smith [37] or Corey [38] conditions failed [25]. The treatment of the highly reactive methylenecyclopropane derivative 1-Me with dimethoxycarbene generated by thermal decomposition of 2,2-dimethoxy-A -l,3,4-oxadiazoline 26 (1.5 equiv. of 26,PhH, 100 °C,24 h),gave a complex mixture of products (Scheme 7) [39], yet the normal cycloadduct 28 was not detected. The formation of compounds 29 - 33 was rationalized via the initially formed zwitterion 27, resulting from the Michael addition of the highly nucleophilic dimethoxycarbene to the C,C-double bond of 1-Me. The ring closure of 27 to the normal product 28 is probably reversible, and 27 can rearrange or add a second dimethoxycarbene moiety and a molecule of acetone to form 33. [Pg.158]

Indium-mediated diastereoselective allylation of L-glyceraldimines with4-bromo-1,1,1-trifluoro-2-butene provided stereoselectively, after further steps, enantiopure 4,4,4-trifluorovaline or 4,4,4-trifluoroisoleucine." ° Enantiopure hexafluorovahnes have been prepared by separation of the diastereomeric mixture resulting from the Michael addition of a chiral amine onto an ester of bis(trifluoromethyl) acryhc acid. Presence of the two CF3 groups reverses the orientation of the Michael addition (Figure 5.7)." ... [Pg.152]

A number of conformationally restricted fluorinated inhibitors have been synthesized and evaluated. These smdies show that (1) subtle conformational differences of the substrates affect the inhibition (potency, reversible or irreversible character) (Figure 7.50), (2) a third inhibition process involving an aromatization mechanism could take place (Figure 7.51). When the Michael addition and enamine pathways lead to a covalently modified active site residue, the aromatization pathway produces a modified coenzyme able to produce a tight binding complex with the enzyme, responsible for the inhibition (Figure 7.51). ... [Pg.258]

The reaction mechanism proposed for the LiBr/NEta induced azomethine ylide cycloadditions to a,p-unsaturated carbonyl acceptors is illustrated in Scheme 11.10. The ( , )-ylides, reversibly generated from the imine esters, interact with acceptors under frontier orbital control, and the lithium atom of ylides coordinates with the carbonyl oxygen of the acceptors. Either through a direct cycloaddition (path a) or a sequence of Michael addition-intramolecular cyclization (path b), the cycloadducts are produced with endo- and regioselectivity. Path b is more likely, since in some cases Michael adducts are isolated. [Pg.765]

Nucleophilic Additions to Alkenes. Nucleophilic additions to alkenes (Scheme 3.9) are mechanistically very closely related to an ElcB process. In fact, the addition process simply involves a reversal of the steps in response to an equilibrium constant that favors the addition product over the alkene. A notable example is the Michael addition of an enolate to an alkene bearing a strong electron-withdrawing group (EWG). [Pg.101]

Tomalia et al. (5) develop a synthetic method for preparing functionalized dendritic compositions having high thermal stability that did not undergo a reversible Michael addition reaction. [Pg.337]

A Mannich-Michael combination is the process by which the intricate bridged skeleton of karachine [140] was constructed. One of the keys to the success is the reversibility of the Michael addition. [Pg.117]


See other pages where Michael addition reversibility is mentioned: [Pg.106]    [Pg.106]    [Pg.41]    [Pg.162]    [Pg.129]    [Pg.478]    [Pg.135]    [Pg.95]    [Pg.512]    [Pg.70]    [Pg.207]    [Pg.286]    [Pg.681]    [Pg.682]    [Pg.35]    [Pg.263]    [Pg.1477]    [Pg.145]    [Pg.245]    [Pg.775]    [Pg.163]    [Pg.69]    [Pg.362]    [Pg.622]   
See also in sourсe #XX -- [ Pg.797 ]




SEARCH



Addition reverse

Addition reversible

Reverse additives

© 2024 chempedia.info