Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Michael acceptors examples

Each of these approaches may be the best for any given lactone the one in the last frame for example would allow you to use any Michael acceptor and any aldehyde. [Pg.111]

The Barton-Zard (BZ) pyrrole synthesis is similar both to the van Leusen pyrrole synthesis that uses Michael acceptors and TosMlC (Section 6.7) and the Montforts pyrrole synthesis using a,P-unsaturated sulfones and alkyl a-isocyanoacetates." An alternative to the use of the reactive nitroalkenes 1 is their in situ generation from P-acetoxy nitroalkanes, which are readily prepared via the Henry reaction between an aldehyde and a nitroalkane followed by acetylation. Examples are shown later. [Pg.70]

Since most often the selective formation of just one stereoisomer is desired, it is of great importance to develop highly selective methods. For example the second step, the aldol reaction, can be carried out in the presence of a chiral auxiliary—e.g. a chiral base—to yield a product with high enantiomeric excess. This has been demonstrated for example for the reaction of 2-methylcyclopenta-1,3-dione with methyl vinyl ketone in the presence of a chiral amine or a-amino acid. By using either enantiomer of the amino acid proline—i.e. (S)-(-)-proline or (/ )-(+)-proline—as chiral auxiliary, either enantiomer of the annulation product 7a-methyl-5,6,7,7a-tetrahydroindan-l,5-dione could be obtained with high enantiomeric excess. a-Substituted ketones, e.g. 2-methylcyclohexanone 9, usually add with the higher substituted a-carbon to the Michael acceptor ... [Pg.242]

Exceptions to this rule may be a result of steric hindrance. However when the Stork enamine method is applied, for example with enamine 10, the less substituted a-carbon becomes connected to the Michael acceptor ... [Pg.242]

Enamines react with acceptor-substituted alkenes (Michael acceptors) in a conjugate addition reaction for example with o ,/3-unsaturated carbonyl compounds or nitriles such as acrylonitrile 8. With respect to the acceptor-substituted alkene the reaction is similar to a Michael addition ... [Pg.268]

A proline derived chiral nickel complex 1 may be used instead of oe,/J-unsaturated esters of lactones modified with a chiral alcohol as the Michael acceptor. The a,(9-unsaturated acid moiety in 1 reacts with various enolates to afford complexes 2 with diastereomcric ratios of 85 15 to 95 5. Hydrolysis of the imine moiety yields the optically active /(-substituted r-alanines. A typical example is shown296. [Pg.967]

A number of chiral alcohols and amino alcohols have been applied as auxiliaries to enolates. The induction may be explained by the shielding of one of the faces of the cnolate by a bulky alkoxy or aryl substituent. Representative examples, together with the results in diastereoselec-tive 1,4-additions with different Michael acceptors, are given in the following. [Pg.972]

For example, using (/ )-5-trimethylsilyl-2-cyclohexenone as the chiral Michael acceptor, optically active m // .v-3.5-disubstituied cyclohexanones 1 are obtained via a Lewis acid catalyzed addition of silylenol ethers or ketene acetals. [Pg.989]

A further example concerns the frtw.s -diastereoselective 1,4-addition of the lithium azaeno-late 4 to the chiral Michael acceptor 5 under thermodynamic control 284. This method has been applied in the synthesis of emetine285- 287. [Pg.990]

Version (b) has a four-channel flow guidance that encompasses two mixing tees in two simple mixing tees (Figure 4.5) [8]. An example of this function is the flow guidance for the Michael addition. In a first step, the base and 1,3-dicarbonyl compound streams merge. The enolate stream thus formed is then mixed with the Michael acceptor. Microporous silica frits are set into the channels to minimize... [Pg.383]

More recently attempts to generate highly selective quiescent affinity labels have been made for a number of protease and kinase targets. As examples, inhibitors of the Rhinovirus 3C protease (Mathews et al 1999) and of the epidermal growth factor receptors (Boschelli, 2002), both incorporating Michael acceptors to covalently inactivate cysteine residues in their target enzymes (Lowry and Richardson, 1981 Figure 8.6), have entered human clinical trials for the treatment of rhinovirus infection and cancer, respectively. [Pg.221]

Oxidation of a furan ring leads to a Michael acceptor as shown in Figure 8.13 (18). One example of a drug that contains a furan ring is furosemide. It causes hepatotoxicity in rodents but is relatively safe at normal doses in humans. [Pg.154]

FIGURE 8.15 Examples of quinone-typc reactive metabolites that can be viewed as Michael acceptors. [Pg.157]

Alternative, also stereoselective, routes to allenic steroids take advantage of cationic cyclization reactions [108] or [2,3]-sigmatropic rearrangements [109]. For example, the allenic Michael acceptor 112 was prepared with 57% chemical yield by reaction of mestranol (111) with diethyl chlorophosphite and was found to inhibit the sterol biosynthesis of the pathogen responsible for Pneumocystis carinii pneumonia (PCP), the most abundant AIDS-related disease (Scheme 18.36) [110]. [Pg.1019]

Similar schemes can be developed easily for analogous reactions of acceptor-substituted polyenes. For example, a triene with an acceptor group in 1-position can form six regioi-someric products of Michael addition and electrophilic capture, and each of these exists as E/Z stereoisomers, diastereomers and/or enantiomers. Thus, reactions of this type are only useful if both the regio- and stereoselectivity can be controlled fortunately, only one isomeric Michael adduct is formed in many cases. This is true in particular for polyunsaturated Michael acceptors which bear at least one triple bond besides one or more double bonds. An additional feature of the latter substrate type is that nucleophilic additions can... [Pg.646]

Vitamin B12 reacts with alkyl halides to form a cobalt (III) alkyl intermediate. Irradiation with visible light leads to the expulsion of a carbon-centered radical and a cobalt (II) species. The latter is easily reduced at —0.8 V to reconvert it to a cobalt (I) intermediate that reenters the catalytic cycle by reacting with a second molecule of the halide. The radical is capable of undergoing a number of interesting transformations, including conjugate addition to a Michael acceptor. The example illustrated in Scheme 9 provided a straightforward route to ester... [Pg.321]

Conjugate addition reactions of acyclic Michael acceptors possessing heteroatom-substituted stereogenic centers in their y-positions may provide useful levels of diastereoselectivity. A typical example is given with the y-alkoxy-substituted enoate 49 in Scheme 6.8 [17]. High levels of diastereoselectivity in favor of the anti addition product 50 were found in the course of dimethylcuprate addition. [Pg.192]

The stereochemical trends discussed above are not limited to a, yS-unsaturated carbonyl compounds other Michael acceptors such as nitroalkenes and unsaturated phosphane oxides display similar behavior. A representative example for the nitroalkene class of Michael acceptors is shown with substrate 70 in Scheme 6.13 [28]. The best results were thus obtained for arylcuprates. Other organocuprates were much less selective, which severely restricts their application in organic synthesis. [Pg.196]

Michael acceptors possessing stereogenic centers in their <5-position or in any position further remote do not exhibit significant levels of stereochemical control if passive substrate control is relied on exclusively. The <5-methyl-substituted epoxy-enoate 101, for example, reacted with lithum dibutylcyanocuprate in a chemo-selective but stereorandom fashion (Scheme 6.22) [46, 47). [Pg.200]

Utilizing prochiral a,a-disubstituted Michael acceptors, the Stetter reaction catalyzed by 76a has proven to be both enantio- and diastereoselective, allowing control of the formation of contiguous stereocenters Eq. 8 [73]. It is noteworthy that a substantial increase in diastereoselectivity is observed, from 3 1 to 15 1, when HMDS, the conjugate acid formed upon pre-catalyst deprotonation, is removed from the reaction vessel. Reproducible results and comparable enantioselectivities are observed with free carbenes for example, free carbene 95 provides 94 in 15 1 diastereoselectivity. The reaction scope is quite general and tolerates both aromatic and aliphatic aldehydes (Table 9). [Pg.96]


See other pages where Michael acceptors examples is mentioned: [Pg.186]    [Pg.270]    [Pg.349]    [Pg.326]    [Pg.107]    [Pg.222]    [Pg.243]    [Pg.85]    [Pg.145]    [Pg.154]    [Pg.156]    [Pg.68]    [Pg.97]    [Pg.670]    [Pg.676]    [Pg.683]    [Pg.112]    [Pg.159]    [Pg.174]    [Pg.74]    [Pg.35]    [Pg.329]    [Pg.112]    [Pg.159]    [Pg.174]    [Pg.199]    [Pg.279]   
See also in sourсe #XX -- [ Pg.500 , Pg.605 ]




SEARCH



Example Michael

Michael acceptor

© 2024 chempedia.info