Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl ketals, reductive

Acetaldehyde Production by Reductive Carbonylation of Methanol, Methyl Ketals, and Methyl Esters... [Pg.125]

Acetaldehyde is obtained from the reaction of synthesis gas with methanol, methyl ketals or methyl esters. The reactions are carried out with an iodide-promoted Co catalyst at 180-200 °C and 2000-5000 psig. In comparing the various feedstocks, the best overall process to make acetaldehyde involves the reductive carbonylation of methyl esters. In this case, acetaldehyde selec-tivities are > 95% ut acceptable rates and conversion. [Pg.125]

Codeine has also been prepared in 70% overall yield, again without purification of intermediate compounds, from dihydrothebainone (132) by the route (132) — (137) shown in Scheme 4. The initial product of the action of bromine and then alkali on dihydrothebainone is the 1,7-dibromo-derivative of dihydro-codeinone, which can be reduced to dihydrocodeinone (133). This may be converted into 7-bromodihydrocodeinone dimethyl ketal (136), which on treatment with potassium t-butoxide in DMSO at 120 °C is converted exclusively into thebaine, but at 60 °C the product is codeinone dimethyl ketal (137), which can be hydrolysed to codeinone (131).154 The process has obvious value in the possible synthesis of codeine via dihydrothebainone, for which a patent has been filed covering a process that proceeds from the reduced isoquinoline (138) 155 the conversion of A-formylnordihydrothebainone into dihydrothebainone by hydrolysis and reductive methylation and by ketalization, reduction, and hydrolysis has been reported.156... [Pg.113]

The union of the E and F rings was accomplished by coupling of the lithium anion derived from 476 with 472 to give EF bis(pyran) 477. Methanolysis of 477 provided methyl ketal 478. Reduction of ketone with KBHEt3 afforded the desired a-alcohol as a single product, which was converted into the phosphonium salt 479 by functional group manipulation. [Pg.247]

A variant in the production of an intermediate in the Robinson synthesis, the tricyclic ABC diketone (18), was developed by Banerjee and co-workers [635, 636] (Scheme 58). The triester (22) was obtained from a-ethoxycarbonylcyclohexanone (21) by the Michael reaction with methyl acrylate, alkaline cleavage, and esterification, and it was then cyclized by Dieckmann s method with subsequent bromination and dehydrogenation to give the unsaturated keto diester (23). The addition of cyanoacetic ester gave compound (26) from which the keto triester (25) was obtained by methylation, acid hydrolysis, and esterification. The latter, by Dieck-mann cyclization and hydrolysis, gave the BC fragment (24). Selective ketalization, reduction, and hydrolysis of the ketal led to the hydroxy-ketone (27). The trans-B/C linkage present in it required the protection... [Pg.196]

Interest in the synthesis of 19-norsteroids as orally active progestins prompted efforts to remove the C19 angular methyl substituent of readily available steroid precursors. Industrial applications include the direct conversion of androsta-l,4-diene-3,17-dione [897-06-3] (92) to estrone [53-16-7] (26) by thermolysis in mineral oil at about 500°C (136), and reductive elimination of the angular methyl group of the 17-ketal of the dione [2398-63-2] (93) with lithium biphenyl radical anion to form the 17-ketal of estrone [900-83-4] (94) (137). [Pg.429]

The cleavage proceeds by initial reduction of the nitro groups followed by acid-catalyzed cleavage. The DNB group can be cleaved in the presence of allyl, benzyl, tetrahydropyranyl, methoxy ethoxy methyl, methoxymethyl, silyl, trityl, and ketal protective groups. [Pg.59]

A carbonyl group cannot be protected as its ethylene ketal during the Birch reduction of an aromatic phenolic ether if one desires to regenerate the ketone and to retain the 1,4-dihydroaromatic system, since an enol ether is hydrolyzed by acid more rapidly than is an ethylene ketal. 1,4-Dihydro-estrone 3-methyl ether is usually prepared by the Birch reduction of estradiol 3-methyl ether followed by Oppenauer oxidation to reform the C-17 carbonyl function. However, the C-17 carbonyl group may be protected as its diethyl ketal and, following a Birch reduction of the A-ring, this ketal function may be hydrolyzed in preference to the 3-enol ether, provided carefully controlled conditions are employed. Conditions for such a selective hydrolysis are illustrated in Procedure 4. [Pg.11]

The solubility of many steroids in ammonia-tetrahydrofuran-/-butyl alcohol is about 0.06 A/, a higher concentration than has been reported in other solvent systems. Still higher concentrations may be possible in particular cases by suitable variation in the solvent ratios Procedure 3 (section V) describes such a reduction of estradiol 3-methyl ether at a 0.12 M concentration. A few steriods such as the dimethyl and diethyl ketals of estrone methyl ether are poorly soluble in ammonia-tetrahydrofuran-/-buty] alcohol and cannot be reduced successfully at a concentration of 0.06 even with a 6 hour reduction period. The diethyl ketal of estrone methyl ether is reduced successfully at 0.12 M concentration using a two-phase solvent system of ammonia-/-amyl alcohol-methylcyclohexane (Procedure 4, section V). This mixture probably would be useful for any nonpolar steroid that is poorly soluble in polar solvents but is readily soluble in hydrocarbons. [Pg.26]

A. Birch Reduction of the Diethyl Ketal of Estrone 3-Methyl Ether in Annmonia-Methylcyclohexane-f-Amyl AlcohoP ... [Pg.51]

Estrone methyl ether (100 g, 0.35 mole) is mixed with 100 ml of absolute ethanol, 100 ml of benzene and 200 ml of triethyl orthoformate. Concentrated sulfuric acid (1.55 ml) is added and the mixture is stirred at room temperature for 2 hr. The mixture is then made alkaline by the addition of excess tetra-methylguanidine (ca. 4 ml) and the organic solvents are removed. The residue is dissolved in heptane and the solution is filtered through Celite to prevent emulsions in the following extraction. The solution is then washed threetimes with 500 ml of 10 % sodium hydroxide solution in methanol to remove excess triethyl orthoformate, which would interfere with the Birch reduction solvent system. The heptane solution is dried over sodium sulfate and the solvent is removed. The residue is satisfactory for the Birch reduction step. Infrared analysis shows that the material contains 1.3-1.5% of estrone methyl ether. The pure ketal may be obtained by crystallization from anhydrous ethanol, mp 99-100°. Acidification of the methanolic sodium hydroxide washes affords 10-12 g of recovered estrone methyl ether. [Pg.51]

The crude ketal from the Birch reduction is dissolved in a mixture of 700 ml ethyl acetate, 1260 ml absolute ethanol and 31.5 ml water. To this solution is added 198 ml of 0.01 Mp-toluenesulfonic acid in absolute ethanol. (Methanol cannot be substituted for the ethanol nor can denatured ethanol containing methanol be used. In the presence of methanol, the diethyl ketal forms the mixed methyl ethyl ketal at C-17 and this mixed ketal hydrolyzes at a much slower rate than does the diethyl ketal.) The mixture is stirred at room temperature under nitrogen for 10 min and 56 ml of 10% potassium bicarbonate solution is added to neutralize the toluenesulfonic acid. The organic solvents are removed in a rotary vacuum evaporator and water is added as the organic solvents distill. When all of the organic solvents have been distilled, the granular precipitate of 1,4-dihydroestrone 3- methyl ether is collected on a filter and washed well with cold water. The solid is sucked dry and is dissolved in 800 ml of methyl ethyl ketone. To this solution is added 1600 ml of 1 1 methanol-water mixture and the resulting mixture is cooled in an ice bath for 1 hr. The solid is collected, rinsed with cold methanol-water (1 1), air-dried, and finally dried in a vacuum oven at 60° yield, 71.5 g (81 % based on estrone methyl ether actually carried into the Birch reduction as the ketal) mp 139-141°, reported mp 141-141.5°. The material has an enol ether assay of 99%, a residual aromatics content of 0.6% and a 19-norandrost-5(10)-ene-3,17-dione content of 0.5% (from hydrolysis of the 3-enol ether). It contains less than 0.1 % of 17-ol and only a trace of ketal formed by addition of ethanol to the 3-enol ether. [Pg.52]

Reductive Methylation of the 3-Ethylene Ketal of Pregna-5,16-diene-3,20-dione ... [Pg.54]

Birch reduction of the diethyl ketal of estrone 3-methyl ether in ammonia-methylcyclohexane-t-amyl alcohol,... [Pg.495]

Reduction with sodium borohydride without protecting groups, 92 Reductive deacetoxylation of ll-keto-12/3-hydroxytigogenin diacetate, 53 Reductive methylation of the 3-ethylene ketal of pregna-5, 16-diene-3, 20-dione, 54... [Pg.497]


See other pages where Methyl ketals, reductive is mentioned: [Pg.117]    [Pg.252]    [Pg.430]    [Pg.54]    [Pg.416]    [Pg.171]    [Pg.115]    [Pg.232]    [Pg.233]    [Pg.213]    [Pg.21]    [Pg.10]    [Pg.20]    [Pg.26]    [Pg.38]    [Pg.40]    [Pg.51]    [Pg.190]    [Pg.193]    [Pg.196]    [Pg.198]    [Pg.90]    [Pg.204]    [Pg.436]    [Pg.443]    [Pg.448]    [Pg.745]    [Pg.746]    [Pg.175]    [Pg.528]   


SEARCH



Ketals, reduction

Methyl ketals, reductive carbonylation

Methyl reductions

Reductive methylation

Reductive methylations

© 2024 chempedia.info