Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl esters, from diazomethane with

The reaction of diazomethane with a Ccirboxylic acid is an efficient way to produce a methyl ester however, the procedure is dangerous. Figure 12-25 illustrates the formation of a methyl ester from benzoic acid and diazomethane. [Pg.205]

The parent of the diazo compounds, diazomethane, CH2=N=N, has been mentioned before in connection with ylide reactions for ring enlargement (Section 16-4A) and the preparation of methyl esters from acids (Table 18-7). It is one of the most versatile and useful reagents in organic chemistry, despite the fact that it is highly toxic, dangerously explosive, and cannot be stored without decomposition. [Pg.1199]

The development of procedures for the identification of CW agents in biomedical samples is ongoing and existing procedures are continuously improved. Quantization is also an important factor, and an isotope dilution GC/MS/MS method was developed for the quantitative determination of five organophosphorus acids derived from the nerve agents VX, tabun, sarin, soman, and cyclohexyl sarin in urine samples. The acids were isolated and converted into their methyl esters by diazomethane. Detection limits in the low p,g I. 1 were obtained using CID of the protonated molecular ion peaks obtained with isobutane Cl(58). [Pg.277]

Whereas all the alkylations in Figure 2.26 take place in basic or neutral solutions, carboxylic acids can be methylated as such with diazomethane (Figure 2.27). The actual nucleophile (the carboxylate ion) and the actual methylating agent (H3C—N+=N) Fig. 2.27. Preparation of are then produced from the reaction partners by proton transfer, methyl esters from carboxylic acids and di azomethane. [Pg.78]

Diazomethane methylation is a good way of making methyl esters from carboxylic acids on a small scale because yields are excellent and the only by-product is nitrogen. However, there is a drawback diazomethane has a boiling point of-24°C, and it is a toxic and highly explosive gas. It therefore has to be used in solution, usually in ether the solution must be dilute, because concentrated solutions of diazomethane are also explosive. It is usually produced by reaction of N-methyl-N-nitrosourea or N-methyl-N-nitrosotoluenesulfonamide with base, and distilled out of that reaction mixture as an azeotrope with ether, straight into a solution of the carboxylic acid. [Pg.1054]

Experimental details solid-state photolysis 957 A crushed crystalline ketone (279a or 279b) ( 5 mg), suspended in hexane (3 ml), was placed between Pyrex microscope slides, sealed in a polyethylene bag under nitrogen and irradiated with a medium-pressure mercury lamp (450 W) at a distance of 10 cm from a water-cooled Pyrex immersion well (Figure 3.9) at either 20 or — 20 °C (cryostat ethanol bath). The product, a chiral organic salt, was derivatized to the corresponding methyl ester by treatment with excess diazomethane and purified by column chromatography. [Pg.316]

Reaction with Diazomethane (Section 17.7B) Diazomethane is used to form methyl esters from carboxylic acids. The mechanism involves protonation of the diazomethane carbon atom by the carboxylic acid to make a methyldiazonium cation, followed by attack of the resulting carboxylate on the methyldiazonium cation to give the methyl ester and Nj. [Pg.723]

Formation of esters by reaction of diazoalkanes with carboxylic acids is a mild and often quantitative procedure. It is particularly useful for the preparation of methyl and ethyl [4], benzyl [3, 58], and benzhydryl esters [45, 59, 60], although not on a large scale. The reaction is initiated by proton transfer from the carboxyl group and 0-alkylation is a competing reaction with phenolic acids. Diazoalkanes may also add to carbonyl [61] and olefinic linkages [62]. Thus the shikimic acid derivative (16) with a limited amount of diazomethane at low temperature gives the methyl ester (17) but with an excess of the reagent forms the isomeric pyrazolines (18 and 19) [63, 64]. [Pg.189]

Diazomethane is used in the synthesis of methyl esters from carboxylic acids. However, it is exceedingly toxic and highly explosive in the gaseous state (b.p. -24°C) and in concentrated solutions. It is therefore usually generated in dilute ether solution and immediately allowed to react with the acid. This method is very mild and permits esterification of molecules possessing acid- and base-sensitive functional groups, as shown in the following example. [Pg.964]

The methyl ester (100, R = CH3), derived from this A-nor acid by treatment with diazomethane, is different from the ester (102) obtained either by Favorskii rearrangement of 2a-bromo-5a-cholestan-3-one (101) or by the action of cyanogen azide on 3-methoxy-5a-cholest-2-ene (103) followed by hydrolysis on alumina. The ketene intermediate involved in photolysis of (99) is expected to be hydrated from the less hindered a-side of the molecule to give the 2j -carboxylic acid. The reactions which afford (102) would be expected to afford the 2a-epimer. These configurational assignments are confirmed by deuteriochloroform-benzene solvent shifts in the NMR spectra of esters (100) and (102). ... [Pg.441]

The desilylacetylated qrcloadducts, produced from the reactions of trimethylsilyl-diazomethane with 3-crotonoyl-2-oxazolidinone or 3-crotonoyl-4,4-dimethyl-2-oxa-zolidinone, were transformed to methyl traws-l-acetyl-4-methyl-l-pyrazoline-5-car-boxylate through the reactions with dimethoxymagnesium at -20 °C. When the optical rotations and chiral HPLC data were compared between these two esters, it was found that these two products had opposite absolute stereochemistry (Scheme 7.39). The absolute configuration was identified on the basis of the X-ray-determined structure of the major diastereomer of cycloadduct derived from the reaction of trimethylsilyldiazomethane to (S)-3-crotonoyl-4-methyl-2-oxazolidi-none. [Pg.283]

Viprostol (81) also incorporates a hydroxy group moved to C-16 and protects this from facile metabolic oxidation by vinylation. It is a potent hypotensive and vasodilatory agent both orally and transdermally. The methyl ester moiety is rapidly hydrolyzed in skin and in the liver so it is essentially a prodrug. It is synthesized from protected E-iodo olefin 78 (compare with 75) by conversion to the mixed organocuprate and this added in a 1,4-sense to olefin 79 to produce protected intermediate 80. The synthesis of viprostol concludes by deblocking with acetic acid and then reesterification with diazomethane to give 81 [19]. [Pg.13]

To set the stage for the crucial aza-Robinson annulation, a reaction in which the nucleophilic character of the newly introduced thiolactam function is expected to play an important role, it is necessary to manipulate the methyl propionate side chain in 19. To this end, alkaline hydrolysis of the methyl ester in 19, followed by treatment of the resulting carboxylic acid with isobutyl chlorofor-mate, provides a mixed anhydride. The latter substance is a reactive acylating agent that combines smoothly with diazomethane to give diazo ketone 12 (77 % overall yield from 19). [Pg.475]

A series of reactions with gases have been selected for the rapid quantification of many of the major products from the oxidation of polyolefins. Infrared spectroscopy is used to measure absorptions after gas treatments. The gases used and the groups quantified include phosgene to convert alcohols and hydroperoxides to chloroformates, diazomethane to convert acids and peracids to their respective methyl esters, sulfur tetrafluoride to convert acids to acid fluorides and nitric oxide to convert alcohols and hydroperoxides to nitrites and nitrates respectively. [Pg.376]

A method involving SPE was developed for the determination of ten A-nitroso amino acids in cured meat products. These compounds were derivatized with diazomethane followed by O-acylation of hydroxyl groups with acetic anhydride-pyridine reagent. The methyl esters and their acylated derivatives were separated by GC on a DB-5 fused silica capillary column and quantified with a TEA-CLD specific for the nitric oxide derived from the thermal denitrosation of nitrosamines recovery exceeded 75% at the 10 ppb level579. [Pg.1145]


See other pages where Methyl esters, from diazomethane with is mentioned: [Pg.84]    [Pg.466]    [Pg.924]    [Pg.358]    [Pg.203]    [Pg.139]    [Pg.220]    [Pg.1378]    [Pg.852]    [Pg.110]    [Pg.133]    [Pg.127]    [Pg.348]    [Pg.444]    [Pg.126]    [Pg.415]    [Pg.442]    [Pg.618]    [Pg.463]    [Pg.123]    [Pg.336]    [Pg.201]    [Pg.48]    [Pg.299]    [Pg.82]    [Pg.271]    [Pg.241]   


SEARCH



Diazomethane methyl esters

Diazomethane methylation with

Esters, from diazomethane

With diazomethane

With diazomethanes

© 2024 chempedia.info