Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl ester hydrolysis, selectivity

Elaboration of triol 88b to bryostatin 7 requires chemoselective hydrolysis of the Cl methyl ester in the presence of the C7 and C20 acetates, macrolide formation, installation of the C13 and C21 methyl enoates, and, finally, global deprotection. The sequencing of these transformations is critical, as attempts to introduce the C21 methyl enoate to form the fully functionalized C-ring pyran in advance of macrolide formation resulted in lactonization onto the C23 hydroxyl. In the event, trimethyltin hydroxide promoted hydrolysis [73] of the Cl carboxylate of triol 88b, and subsequent trie thy lsilylation of the C3 and C26 hydroxyls each occurs in a selective fashion, thus providing the seco-acid 89. Yamaguchi macrolacto-nization [39] proceeds uneventfully to provide the macrolide 67 in 66 % yield (Scheme 5.14). [Pg.125]

Behforouz s synthesis employed more highly substituted quinoline aldehyde 30, which, when condensed with ester 21, produced /3-carboline 31 without need of a separate oxidation step. Selective hydrolysis of the acetamide group then provided lavendamycin methyl ester in high yield. A few years later, Behforouz and coworkers reported an improved synthesis of 30, thus boosting the overall yield of their lavendamycin synthesis [33]. [Pg.113]

Hydrolysis of 20 with the aid of butanol followed by syn-selective reduction of jS-keto ester 21 and protection as the isopropylidene acetal was accomplished in 87% yield. L1A1H4 reduction and TBS protection of the primary alcohol gave 22 in very good yields. In this strategy, the furan residue serves as an aldehyde synthon and ozonolysis followed by esterification gave the corresponding methyl ester. Reduction and consecutive oxidation established aldehyde 23 in 71% yield. [Pg.55]

An example of an industrial membrane bioreactor is the hollow-fiber membrane system for the production of (-)-MPGM (3-(4-methoxyphenyl)glycidic acid methyl ester), which is an important intermediate for the production of diltiazem hydrochloride [81, 82]. For the enantiospecific hydrolysis of MPGM a hollow-fiber ultrafiltration membrane with immobilized lipase from Serratia marcescens is used. (-f)-MPGM is selectively converted into (2S,3J )-(-F)-3-(4-methoxyphenyl)glyci-dic acid and methanol. The reactant is dissolved in toluene, whereas the hydrophilic product is removed via the aqueous phase at the permeate side of the membrane, see Fig. 13.9. EnantiomericaUy pure (-)-MPGM is obtained from the to-... [Pg.540]

Selective hydrolysis of the 3a-acetoxy-group of fully acetylated cholic acid derivatives has been achieved with methanolic HCl. The hydrolysis occurs more rapidly than the methylation of the side-chain carboxylic acid. The 3-monosulphates of cholic, chenodeoxycholic, and deoxycholic acids have been prepared using this selective hydrolysis on the fully acetylated methyl esters. The resultant 3a-hydroxy-compounds were then treated with chlorosulphonic acid and the... [Pg.233]

Ester hydrolysis.1 Pyridinium chloride selectively demethylates methyl esters of o-substituted aromatic carboxylic acids. [Pg.230]

A considerably simpler approach in the context of a biocatalytic pathway was reported by Sidler et al. (Scheme 4.16). Here, the methyl ester 45 could be hydrolyzed selectively by the protease subtilisin (lipases and esterases were unreactive), allowing hydrolysis of the unwanted (R)-enantiomer. The desired (S)-45 was recovered from the solution in 80-90% chemical yield (98% ee) and was further manipulated into (S) L-771,668 [191]. [Pg.112]

N-Acylimines which may react as l-oxa-3-aza-l,3-butadienes represent a class of heterodienes which exhibit a close relationship to l-thia-3-aza-l,3-butadienes [13]. A very impressive application of such an l-oxa-3-aza-l,3-butadiene has been worked out by Swindell et al.[445]. The asymmetric hetero Diels-Alder reaction described therein opens a very elegant approach to the A-ring side chain of taxol. This synthesis takes advantage of the bulky chiral auxiliary attached to the dienophile 6-5 which upon cycloaddition with the l-oxa-3-aza-1,3-butadiene 6-4 yielded the 1,3-oxazine derivative 6-6. Subsequent hydrolysis, hydrogenolysis and transesterification gave the methyl ester of the taxol A-ring side chain 6-7 in good endo and excellent zr-facial selectivity (Fig. 6-2). [Pg.80]

The Leukart reaction has also been used in the conversion of dehydroepiandro-sterone into 17/3-formylamino-3/3-formyloxyandrost-5-ene, which on reduction with lithium aluminium hydride afforded 3/3-hydroxy-17/3-me thylaminoandrost-5-ene. Acylation with isocaproyl chloride then furnished the N-methyl-N-isocaproyl steroid (197), after selective ester hydrolysis of the initially formed ON-diacyl derivative. The amide (197) was further converted into its 3,5-cyclo-6-ketone via the 3,5-cyclo-6/3-alcohol and thence by reaction with hydrogen bromide into the corresponding 3/3-bromo-5a-6-ketone which upon dehydrobromination furnished a A2-5a-6-ketone and ultimately the 2-monoacetate of the 2/3,3/3-diol (198) after reaction with silver acetate and iodine. Hydrolysis to the 2/3,3/3-diol (198) gave a separable mixture of the 2/3,3/8-dihydroxy-5a- and -5/3-ketones.88... [Pg.304]

The simultaneous and selective protection of the two equatorial hydroxyl groups in methyl dihydroquinate [11L1, Scheme 3.111 j as the butane-2,3-diace-tal 111 2 was a key strategic feature in a synthesis of inhibitors of 3-dehydroqui-nate synthase.205 Later in the synthesis, deprotection of intermediate 111.4 required three steps (a) hydrolysis of the trimethylsilyl ether and the butane-2,3-diacetal with trifluoroacetic acid (b) cleavage of the isopropyl phosphonate with bromotrimethylsilane and (c) hydrolysis of the methyl ester with aqueous sodium hydroxide. Compound 111 1 has also been used in the synthesis of inhibitors 3-dehydroquinate dehydratase206 and influenza neuraminadase207-208 as well as shikimic add derivatives.209 210... [Pg.173]


See other pages where Methyl ester hydrolysis, selectivity is mentioned: [Pg.24]    [Pg.277]    [Pg.331]    [Pg.124]    [Pg.5]    [Pg.164]    [Pg.126]    [Pg.140]    [Pg.442]    [Pg.980]    [Pg.263]    [Pg.81]    [Pg.106]    [Pg.25]    [Pg.122]    [Pg.806]    [Pg.543]    [Pg.239]    [Pg.464]    [Pg.1512]    [Pg.483]    [Pg.484]    [Pg.338]    [Pg.448]    [Pg.135]    [Pg.287]    [Pg.465]    [Pg.388]    [Pg.356]    [Pg.181]    [Pg.147]    [Pg.58]    [Pg.243]    [Pg.125]    [Pg.219]    [Pg.287]    [Pg.406]    [Pg.23]    [Pg.226]   


SEARCH



Hydrolysis, selective

Methyl hydrolysis

Selective methylation

© 2024 chempedia.info