Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metathesis transition-metal-catalyzed

Enyne metathesis Transition metal catalyzed cycloisomerization of [1,n]-enynes to the corresponding 1,3-dienes. 152... [Pg.510]

N-Heterocycles, formation in transition metal-catalyzed enyne metathesis 98YGK433. [Pg.221]

In addition to the applications reported in detail above, a number of other transition metal-catalyzed reactions in ionic liquids have been carried out with some success in recent years, illustrating the broad versatility of the methodology. Butadiene telomerization [34], olefin metathesis [110], carbonylation [111], allylic alkylation [112] and substitution [113], and Trost-Tsuji-coupling [114] are other examples of high value for synthetic chemists. [Pg.252]

Olefin metathesis is the transition-metal-catalyzed inter- or intramolecular exchange of alkylidene units of alkenes. The metathesis of propene is the most simple example in the presence of a suitable catalyst, an equilibrium mixture of ethene, 2-butene, and unreacted propene is obtained (Eq. 1). This example illustrates one of the most important features of olefin metathesis its reversibility. The metathesis of propene was the first technical process exploiting the olefin metathesis reaction. It is known as the Phillips triolefin process and was run from 1966 till 1972 for the production of 2-butene (feedstock propene) and from 1985 for the production of propene (feedstock ethene and 2-butene, which is nowadays obtained by dimerization of ethene). Typical catalysts are oxides of tungsten, molybdenum or rhenium supported on silica or alumina [ 1 ]. [Pg.224]

Quirk RP (ed) (1988) Transition metal catalyzed polymerization Ziegler-Natta and metathesis polymerizations. Cambridge University Press, Cambridge... [Pg.147]

The main reason for the rapid development of metathesis reactions on a laboratory scale (the reaction itself had been known for quite a long time) has been the development of active and robust second-generation ruthenium catalysts (6/3-14 to 6/3-16), which usually provide better yields than the first-generation Grubbs catalysts (6/3-9 or 6/3-13) (Scheme 6/3.2). This also reflects the huge number of domino processes based on ruthenium-catalyzed metathesis, which is usually followed by a second or even a third metathesis reaction. However, examples also exist where, after a metathesis, a second transition metal-catalyzed transformation or a pericyclic reaction takes place. [Pg.441]

The last few decades have witnessed some exciting developments of synthetic methodologies in organic chemistry. Chiefly among these developments are ringclosing metathesis (RCM) and transition metal-catalyzed C-H activation, which have emerged as novel and useful tools. [Pg.288]

Metallocyclobutanes from cyclopropanes have been frequently invoked in transition metal-catalyzed rearrangements of strained ring hydrocarbons, and this body of chemistry is quite rich and diverse, as evidenced in the excellent review by Bishop (72). Because of this diversity, the significance of isolated observations should not be overstated nevertheless, certain reactions outlined by Bishop are closely related to the carbene retroadditions reported by Gassman and co-workers using metathesis catalysts. [Pg.466]

In this chapter, theoretical studies on various transition metal catalyzed boration reactions have been summarized. The hydroboration of olefins catalyzed by the Wilkinson catalyst was studied most. The oxidative addition of borane to the Rh metal center is commonly believed to be the first step followed by the coordination of olefin. The extensive calculations on the experimentally proposed associative and dissociative reaction pathways do not yield a definitive conclusion on which pathway is preferred. Clearly, the reaction mechanism is a complicated one. It is believed that the properties of the substrate and the nature of ligands in the catalyst together with temperature and solvent affect the reaction pathways significantly. Early transition metal catalyzed hydroboration is believed to involve a G-bond metathesis process because of the difficulty in having an oxidative addition reaction due to less available metal d electrons. [Pg.210]

Conventionally, organometallic chemistry and transition-metal catalysis are carried out under an inert gas atmosphere and the exclusion of moisture has been essential. In contrast, the catalytic actions of transition metals under ambient conditions of air and water have played a key role in various enzymatic reactions, which is in sharp contrast to most transition-metal-catalyzed reactions commonly used in the laboratory. Quasi-nature catalysis has now been developed using late transition metals in air and water, for instance copper-, palladium- and rhodium-catalyzed C-C bond formation, and ruthenium-catalyzed olefin isomerization, metathesis and C-H activation. Even a Grignard-type reaction could be realized in water using a bimetallic ruthenium-indium catalytic system [67]. [Pg.294]

This article presents the principles known so far for the synthesis of metal complexes containing stable carbenes, including the preparation of the relevant carbene precursors. The use of some of these compounds in transition-metal-catalyzed reactions is discussed mainly for ruthenium-catalyzed olefin metathesis and palladium-Znickel-catalyzed coupling reactions of aryl halides, but other reactions will be touched upon as well. Chapters about the properties of metal- carbene complexes, their applications in materials science and medicinal chemistry, and their role in bioinorganic chemistry round the survey off. The focus of this review is on ZV-heterocyclic carbenes, in the following abbreviated as NHC and NHCs, respectively. [Pg.3]

Vlefin disproportionation or metathesis is a transition-metal catalyzed reaction involving the interchange of alkylidene units between olefins (Reaction 1) (1, 2, 3, 4). [Pg.201]

The role of carbenes and metal carbene complexes in transition metal-catalyzed processes is suspected of being quite extensive (61). For example, the role of carbenes in the olefin metathesis reaction as described in the previous section is probably important (55, 60). It is quite possible that the o-v rearrangement is important in these reactions also, but this has not been investigated in detail. [Pg.249]

During the present decade, a wide variety of polycyclic carbacephem derivatives have been reported starting from readily available monocyclic /3-lactams, which after transformation in more functionalized compounds and further cyclization yielded different fused carbacephems. Several approaches for the preparation of fused carbacephem derivatives including cycloaddition reactions such as the [2+2], 1,3-dipolar, and Diels-Alder reactions, as well as transition metal-catalyzed reactions such as the Pauson-Khand and ring-closing metathesis (RCM) reactions have been reported in the literature. [Pg.152]

Ruthenium is not an effective catalyst in many catalytic reactions however, it is becoming one of the most novel and promising metals with respect to organic synthesis. The recent discovery of C-H bond activation reactions [38] and alkene metathesis reactions [54] catalyzed by ruthenium complexes has had a significant impact on organic chemistry as well as other chemically related fields, such as natural product synthesis, polymer science, and material sciences. Similarly, carbonylation reactions catalyzed by ruthenium complexes have also been extensively developed. Compared with other transition-metal-catalyzed carbonylation reactions, ruthenium complexes are known to catalyze a few carbonylation reactions, such as hydroformylation or the reductive carbonylation of nitro compounds. In the last 10 years, a number of new carbonylation reactions have been discovered, as described in this chapter. We ex-... [Pg.193]


See other pages where Metathesis transition-metal-catalyzed is mentioned: [Pg.189]    [Pg.263]    [Pg.192]    [Pg.24]    [Pg.675]    [Pg.451]    [Pg.225]    [Pg.455]    [Pg.487]    [Pg.499]    [Pg.163]    [Pg.467]    [Pg.8]    [Pg.155]    [Pg.65]    [Pg.7]    [Pg.157]    [Pg.263]    [Pg.142]    [Pg.2430]    [Pg.68]    [Pg.92]    [Pg.282]    [Pg.36]    [Pg.455]    [Pg.160]    [Pg.218]    [Pg.330]    [Pg.46]    [Pg.198]    [Pg.265]   
See also in sourсe #XX -- [ Pg.155 ]




SEARCH



Metal metathesis

Transition metal catalyzed

© 2024 chempedia.info