Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metallic nanoparticles fluorescence emission

In about 2000, my laboratory started to study the interactions of fluorophores with metallic nanoparticles, both solution-based and surface-immobilized. Our findings agreed with other workers whom had observed increases in fluorescence emission coupled with a decrease in the fluorophores radiative lifetime. Subsequently, we applied classical far-field fluorescence descriptions to these experimental observations, which ultimately suggested a modification in the fluorophores s intrinsic radiative decay rate, a rate thought to be mostly unchanged and only weakly dependent on external environmental factors. This simple description, coupled with what seemed like a limitless amount of applications led to a paper published by our laboratory in 2001 entitled Metal-Enhanced Fluorescence , or MEF, a term now widely used today almost a decade later. [Pg.8]

The detected fluorescence can be significantly enhanced, however, by exploiting the plasmonic enhancement which can occur when a metal nanoparticle (NP) is placed in the vicinity of a fluorescent label or dye [1-3]. This effect is due to the localised surface plasmon resonance (LSPR) associated with the metal NP, which modifies the intensity of the electromagnetic (EM) field around the dye and which, under certain conditions, increases the emitted fluorescence signal. The effect is dependent on a number of parameters such as metal type, NP size and shape, NP-fluorophore separation and fluorophore quantum efficiency. There are two principal enhancement mechanisms an increase in the excitation rate of the fluorophore and an increase in the fluorophore quantum efficiency. The first effect occurs because the excitation rate is directly proportional to the square of the electric field amplitude, and the maximum enhancement occurs when the LSPR wavelength, coincides with the peak of the fluorophore absorption band [4, 5]. The second effect involves an increase in the quantum efficiency and is maximised when the coincides with the peak of the fluorophore emission band [6]. [Pg.139]

Quenching At shorter distances, ranging from few nanometers to the physical contact with the metallic structure, a mechanism tends to increase the total decay rate. This effect, which is responsible for fluorescence quenching, is due to the absorption of fluorescence photons in the metallic structure itself (99). Another effect is based on interactions of the fluorophore with free electrons in the metal, wherein the plasmon absorption leads to lower fluorescent emission efficiency (100). Theoretical study asserts that the optimized distance between the excitation source and the fluorophore is around 2-5 nm (99, 101,102). Nanoparticles coated with a thin shell (e.g. silica, 5nm in thickness) and the dye attached to the dielectric shell could overcome quenching effects (84, 103). The quenching effect can also be found in the quantum dot / GNP system (104). It is noted that as the concentration of fluorophore is high, the self-quenching effect should also be considered. (100)... [Pg.207]

At very short metal nanoparticle-fluorophore distances ( 1 to 3 nm), a large decrease in fluorescence, known as quenching, is expected [8,19,20]. At greater distances however, the fluorescence can undergo enhancement or continue to experience a degree of quenching. The examples outlined below will illustrate that whether enhancement or quenching is observed depends on nanoparticle size and shape, the distance between the fluorophore and the metal nanoparticle surface, and on the overlap between the SPR and the excitation and/or emission transitions in the fluorophore. [Pg.296]

There are essentially two models that describe the interaction between an excited fluorophore and the SPR of the metal to account for quenching and enhancement of the fluorescence. They both depend on coupling of the fluorophore excited state to the SPR and this is dependent of the spectral overlap of the emission of the fluorophore and the SPR, and the distance between the fluorophore and the metal nanoparticle surface. [Pg.308]

This chapter is devoted to describe the impact of metallic nanosphere to the multi-photon excitation fluorescence of Tryptophan, and little further consideration to multi-photon absorption process will be given, as the reader can find several studies in [11-14]. In section II, the nonlinear light-matter interaction in composite materials is discussed through the mechanism of nonlinear susceptibilities. In section III, experimental results of fluorescence induced by multi-photon absorption in Tryptophan are reported and analyzed. Section IV described the main results of this chapter, which is the effect of metallic nanoparticles on the fluorescent emission of the Tryptophan excited by a multi-photon process. Influence of nanoparticle concentration on the Tryptophan-silver colloids is observed and discussed based coi a nonlinear generalization of the Maxwell Garnett model, introduced in section II. The main conclusion of the chapter is given in secticHi IV. [Pg.530]

Understanding the field enhancement of radiative rates is insufficient to predict how molecular photophysical properties such as enhancement of fluorescence quantum yield will be affected by interactions of the molecule with plasmons. A more detailed model of the photophysics that accounts for non-radiative rates is necessary to deduce effects on photoluminescence (PL) yields. Such a model must include decay pathways present in the absence of metal nanoparticles as well as additional pathtvays such as charge transfer quenching that are associated with the introduction of the metal particles. Schematically, we depict the simplest conceivable model in Figure 19. IB. Note that both the contributions of radiative rate enhancement and the excited state quenching by proximity to the metal surface will depend on distance of the chromophore from the metal assembly. In most circumstances, one expects the optimal distance of the chromophores from the surface to be dictated by the competition between quenching when it is too close and reduction of enhancement when it is too far. The amount of PL will be increased both due to absorption enhancement and emissive rate enhancement. Hence, it is possible to increase PL substantially even for molecules with 100 % fluorescence yield in the absence of metal nanoparticles. [Pg.547]


See other pages where Metallic nanoparticles fluorescence emission is mentioned: [Pg.123]    [Pg.333]    [Pg.519]    [Pg.534]    [Pg.536]    [Pg.536]    [Pg.29]    [Pg.184]    [Pg.244]    [Pg.327]    [Pg.337]    [Pg.363]    [Pg.371]    [Pg.410]    [Pg.8]    [Pg.8]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.93]    [Pg.101]    [Pg.109]    [Pg.113]    [Pg.113]    [Pg.121]    [Pg.161]    [Pg.162]    [Pg.220]    [Pg.221]    [Pg.229]    [Pg.279]    [Pg.309]    [Pg.440]    [Pg.467]    [Pg.529]    [Pg.559]    [Pg.580]   
See also in sourсe #XX -- [ Pg.534 ]




SEARCH



Fluorescence, nanoparticles

Fluorescent emission

Metal nanoparticle

Metal nanoparticles

Metals emission

Nanoparticle fluorescent

Nanoparticles fluorescent

© 2024 chempedia.info