Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal hydroxides hydrogen

By analogy, ammonium salts should behave as acids in liquid ammonia, since they produce the cation NH4 (the solvo-cation ), and soluble inorganic amides (for example KNHj, ionic) should act as bases. This idea is borne out by experiment ammonium salts in liquid ammonia react with certain metals and hydrogen is given off. The neutralisation of an ionic amide solution by a solution of an ammonium salt in liquid ammonia can be carried out and followed by an indicator or by the change in the potential of an electrode, just like the reaction of sodium hydroxide with hydrochloric acid in water. The only notable difference is that the salt formed in liquid ammonia is usually insoluble and therefore precipitates. [Pg.90]

In addition to the abnormal properties already discussed, aqueous hydrofluoric acid has the properties of a typical acid, attacking metals with the evolution of hydrogen and dissolving most metallic hydroxides and carbonates. [Pg.330]

Addition of an alkali metal hydroxide solution to an aqueous solution of a nickel(II) salt precipitates a finely-divided green powder. nickel(II) hydroxide NilOHfj on heating this gives the black oxide. NiO. which is also obtained by heating nickel(II) carbonate or the hydrated nitrate. Black nickel(II) sulphide, NiS, is obtained by passing hydrogen sulphide into a solution of a nickel(II) salt. [Pg.406]

Metal Acetylides. The replacement of a hydrogen atom on acetylene by a metal atom under basic conditions results in the formation of metal acetyhdes which react with water in a highly exothermic manner to yield acetylene and the corresponding metal hydroxide. Certain metal acetyUdes can be... [Pg.373]

Alkali metal peroxides are stable under ambient conditions in the absence of water. They dissolve vigorously in water, forming hydrogen peroxide and the metal hydroxide. They are strong oxidizing agents and can react violendy with organic substances. Only lithium peroxide and sodium peroxide have been commercialized. [Pg.90]

The thermodynamic data pertinent to the corrosion of metals in aqueous media have been systematically assembled in a form that has become known as Pourbaix diagrams (11). The data include the potential and pH dependence of metal, metal oxide, and metal hydroxide reactions and, in some cases, complex ions. The potential and pH dependence of the hydrogen and oxygen reactions are also suppHed because these are the common corrosion cathodic reactions. The Pourbaix diagram for the iron—water system is given as Figure 1. [Pg.275]

With Acyl Halides, Hydrogen Halides, and Metallic Halides. Ethylene oxide reacts with acetyl chloride at slightly elevated temperatures in the presence of hydrogen chloride to give the acetate of ethylene chlorohydrin (70). Hydrogen haUdes react to form the corresponding halohydrins (71). Aqueous solutions of ethylene oxide and a metallic haUde can result in the precipitation of the metal hydroxide (72,73). The haUdes of aluminum, chromium, iron, thorium, and zinc in dilute solution react with ethylene oxide to form sols or gels of the metal oxide hydrates and ethylene halohydrin (74). [Pg.453]

The alkali metal hydroxides are also readily absorb CO2 and H2S to form carbonates (or hydrogencarbonates) and sulfides (or hydrogen-sulfides), and are extensively used to remove mercaptans from petroleum products. Amphoteric oxides such as those of Al, Zn, Sn and Pb react with MOH to form aluminates, zincates, stannates and plumbates, and even SiC>2 (and silicate glasses) are attacked. [Pg.87]

A three-step process developed hy Snamprogetti is based on the reaction of acetylene and acetone in liquid ammonia in the presence of an alkali metal hydroxide. The product, methylhutynol, is then hydrogenated to methylhutenol followed hy dehydration at 250-300°C over an acidic heterogeneous catalyst. [Pg.105]

When water is added to a mixture of aluminum metal and sodium hydroxide, hydrogen gas is produced. This is the reaction used in commercial drain cleaners ... [Pg.283]

B. Precipitation and separation of hydroxides at controlled hydrogen ion concentration or pH. The underlying theory is very similar to that just given for sulphides. Precipitation will depend largely upon the solubility product of the metallic hydroxide and the hydroxide ion concentration, or since pH + pOH = pKw (Section 2.16), upon the hydrogen ion concentration of the solution. [Pg.435]

Weiss et al. [75] have synthesized Na and Zn salt of sulfonated styrene(ethylene-co-butylene)-styrene triblock ionomer. The starting material is a hydrogenated triblock copolymer of styrene and butadiene with a rubber mid-block and PS end-blocks. After hydrogenation, the mid-block is converted to a random copolymer of ethylene and butylene. Ethyl sulfonate is used to sulfonate the block copolymer in 1,2-dichloroethane solution at 50°C using the procedure developed by Makowski et al. [76]. The sulfonic acid form of the functionalized polymer is recovered by steam stripping. The neutralization reaction is carried out in toluene-methanol solution using the appropriate metal hydroxide or acetate. [Pg.116]

Proposed intermediates in the above reaction include atomic hydrogen [27, 28], hydride ions [29, 30], metal hydroxides [31], metaphosphites [32, 33], and excitons [34]. In general, the postulated mechanisms are not supported by direct independent evidence for these intermediates. Some authors [35] maintain that the mechanism is entirely electrochemical (i.e. it is controlled by electron transfer across the metal-electrolyte interface), but others [26] advocate a process involving a surface-catalyzed redox reaction without interfacial electron transfer. [Pg.255]

Tables 1 and 2 clearly show that the use of such alkali metal hydroxides as KOH, CsOH, and mixtures of KOH/NaOH allowed the reaction to proceed to a high DMAPN conversion with a very high selectivity for the primary amine. These results suggest that the highest selectivity in the hydrogenation of DMAPN to DMAPA is obtained with KOH, and mixtures of KOH/NaOH. Tables 1 and 2 clearly show that the use of such alkali metal hydroxides as KOH, CsOH, and mixtures of KOH/NaOH allowed the reaction to proceed to a high DMAPN conversion with a very high selectivity for the primary amine. These results suggest that the highest selectivity in the hydrogenation of DMAPN to DMAPA is obtained with KOH, and mixtures of KOH/NaOH.
This is a quite remarkable result, as the chemoselective hydrogenation of geraniol over a heterogeneous catalyst has rarely been reported. It can be carried out over platinum containing zeolite (9), over Pt/Al203 modified with carboxylic acids (10), over Ni/diatomaceous earth and alkali hydroxides or carbonates (11) or NiRaney and alkali or alkaline earth metal hydroxides (12), yields never exceeding 85%. [Pg.383]

Thus far, we have used the Arrhenius theory of acids and bases (Secs. 6.4 and 7,3) in which acids are defined as hydrogen-containing compounds that react with bases. Bases are compounds containing OH" ions or that form OH- ions when they react with water. Bases react with acids to form salts and water. Metallic hydroxides and ammonia are the most familiar bases to us. [Pg.302]

Two basic methods have been used to grow metal oxide thin films by the SILAR technique (see Table 8.1). The more common of these methods consists of the adsorption of metal hydroxide ions on the substrate surface followed by thermal treatment to convert hydroxide to an oxide. Another way to produce metal oxide films is to use hydrogen peroxide as the anion precursor and then to convert the formed metal peroxide film to an oxide film. Several examples of each approach are discussed in more detail below. [Pg.244]

Group 1 elements all react vigorously with cold water to produce the metal hydroxide (an alkali) and hydrogen gas. [Pg.53]

The hydrolysis reactions of ammonium ions to give ammonia and carbonate to give hydrogen carbonate result in a pH of about 9, depending on the temperature. This pH is suitable for precipitating a large number of metal hydroxides. [Pg.100]

The addition of a-chloronitroalkanes to solutions of alkali metal hydroxide has been used for the synthesis of some 1,2-dinitroethylene derivatives (43)." " These reactions involve attack of the nitronate salt (40) on the aci-form (39) of the unreacted em-chloronitroalkane followed by formal loss of hydrogen chloride. 2,3-Dinitro-2-butene and 3,4-dinitro-3-hexene (45) are formed in this way from 1-chloro-l-nitroethane and 1-chloro-l-nitropropane (44) respectively. [Pg.14]

Nitroalkanols are intermediate compounds that are used extensively in many important syntheses 142). They can be converted by hydrogenation into / -aminoalcohols, which are intermediates for pharmacologically important chemicals such as chloroamphenicol and ephedrine. They are obtained by Henry s reaction by the condensation of nitroalkanes with aldehydes. The classical method for this transformation involves the use of bases such as alkali metal hydroxides, alkoxides, Ba(OH)2, amines, etc. 142-144). However, these catalysts give predominantly dehydrated products—nitroalkenes— which are susceptible to polymerization (Scheme 16). The reaction proceeds by the nucleophilic addition of the carbanion formed by the abstraction of a proton from the nitro compound to the carbon atom of the carbonyl group, finally forming the nitroaldol by abstraction of a proton from the catalyst. [Pg.260]

Complex hydrides react with water to give hydrogen, a metal hydroxide and borax [90]. Very high hydrogen densities are reached if the water from the combustion of the hydrogen is reused (Table 5.7). [Pg.156]

Atkah metal hydrides too abstract protons from boranes. While water is produced with basic hydroxides, hydrogen is liberated with hydrides. Except diborane, all other boron hydrides undergo similar reactions, liberating hydrogen ... [Pg.128]

Lithium hydride and sodium hydride are the only alkali metal hydrides of much practical importance. They are useful when it is desirable for proton (or hydrogen atom) transfers to accompany electron-transfer events. Because these hydrides react quickly with water to form alkali metal hydroxides and hydrogen gas, they are frequently used as drying agents, particularly for hydrocarbons and ethers. Care should be exercised in using them to dry solvents that are not predried, and they should not be used to dry alcohols or halogenated solvents. [Pg.340]

This will weaken the O—H bond and may even break it, resulting in formation of a metal hydroxide and a hydrogen ion, the latter which will be hydrated by a... [Pg.14]


See other pages where Metal hydroxides hydrogen is mentioned: [Pg.287]    [Pg.226]    [Pg.11]    [Pg.93]    [Pg.66]    [Pg.186]    [Pg.388]    [Pg.716]    [Pg.709]    [Pg.314]    [Pg.282]    [Pg.20]    [Pg.297]    [Pg.70]    [Pg.895]    [Pg.502]    [Pg.287]    [Pg.19]    [Pg.215]    [Pg.472]    [Pg.433]    [Pg.155]    [Pg.231]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.8 ]

See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.8 ]




SEARCH



Metal hydroxides

Metallic hydroxide

© 2024 chempedia.info