Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal groups carbonyl compounds, palladium-catalyzed

Many such activated acyl derivatives have been developed, and the field has been reviewed [7-9]. The most commonly used irreversible acyl donors are various types of vinyl esters. During the acylation of the enzyme, vinyl alcohols are liberated, which rapidly tautomerize to non-nucleophilic carbonyl compounds (Scheme 4.5). The acyl-enzyme then reacts with the racemic nucleophile (e.g., an alcohol or amine). Many vinyl esters and isopropenyl acetate are commercially available, and others can be made from vinyl and isopropenyl acetate by Lewis acid- or palladium-catalyzed reactions with acids [10-12] or from transition metal-catalyzed additions to acetylenes [13-15]. If ethoxyacetylene is used in such reactions, R1 in the resulting acyl donor will be OEt (Scheme 4.5), and hence the end product from the acyl donor leaving group will be the innocuous ethyl acetate [16]. Other frequently used acylation agents that act as more or less irreversible acyl donors are the easily prepared 2,2,2-trifluoro- and 2,2,2-trichloro-ethyl esters [17-23]. Less frequently used are oxime esters and cyanomethyl ester [7]. S-ethyl thioesters such as the thiooctanoate has also been used, and here the ethanethiol formed is allowed to evaporate to displace the equilibrium [24, 25]. Some anhydrides can also serve as irreversible acyl donors. [Pg.80]

Ort/io-metallated palladium complexes of azo and hydrazobenzene catalyze the reduction by H2 of nitroaromatics, alkenes, alkynes, and aromatic carbonyl compounds. A palladium-aryl or bond in the precursor complex is a requirement for catalytic activity. The ligands are themselves susceptible to reduction. The kinetics of the reaction under 1 atm H2 have been measured. Palladium(O) complexes catalyze the hydrostannolysis of allyl and allyloxy carbonyl groups. The reaction can be applied to the selective protection-deprotection of aminoacid derivatives see equation (9). Alkenyl cyclopropanes carrying electron-withdrawing substituents are selectively hydrogenolyzed by Pd(0)/PBu3 catalysts... [Pg.372]

The carbonylation of allylic compounds by transition metal complexes is a versatile method for synthesizing unsaturated carboxylic acid derivatives (Eq. 11.22) [64]. Usually, palladium complexes are used for the carbonylation of allylic compounds [65], whereas ruthenium complexes show characteristic catalytic activity in allylic carbonylation reactions. Cinnamyl methyl carbonate reacts with CO in the presence of a Ru3(CO)i2/l,10-phenanthroline catalyst in dimethylformamide (DMF) to give methyl 4-phenyl-3-butenoate in excellent yield (Eq. 11.23) [66]. The regioselectivity is the same as in the palladium complex-catalyzed reaction. However, when ( )-2-butenyl methyl carbonate is used as a substrate, methyl ( )-2-methyl-2-butenoate is the major product, with the more sterically hindered carbon atom of the allylic group being carbo-nylated (Eq. 11.24). This regioselectivity is characteristic of the ruthenium catalyst [66]. [Pg.284]


See other pages where Metal groups carbonyl compounds, palladium-catalyzed is mentioned: [Pg.109]    [Pg.195]    [Pg.845]    [Pg.150]    [Pg.417]    [Pg.840]    [Pg.265]    [Pg.2029]    [Pg.26]    [Pg.20]    [Pg.28]    [Pg.101]    [Pg.276]    [Pg.120]    [Pg.187]    [Pg.589]    [Pg.1138]    [Pg.1712]    [Pg.149]    [Pg.102]   


SEARCH



Carbonyl compounds metalation

Carbonylation catalyzed

Carbonylation palladium-catalyzed

Carbonylations, palladium-catalyzed

Catalyzed Carbonylations

Metal catalyzed carbonylation

Metal groups carbonylation

Metal palladium

Metallic palladium

Palladium carbonyl compounds

Palladium carbonylation

Palladium carbonylations

Palladium carbonyls

Palladium compounds

Palladium compounds carbonylation

Palladium groups

© 2024 chempedia.info