Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-arene complexes platinum

T -Arene complexes containing late metals have been known for many years, but the scope and utility of these complexes have increased in recent years. Copper(I) and silver form labile arene complexes of various stoichiometries that are apparently T -arene complexes. A few of these complexes have been structurally characterized. More recently, a large number of V-arene and heteroarene complexes of osmium, rhenium, molybdenum, and tungsten have been prepared for the purpose of dearomatization of the arene or heteroarenes. Two examples are shown in Figure 2.33. This dearomatization creates a diene or vinyl unit that imdergoes the organic chemistry of ttiese isolated units, instead of the chemistry of an arene. n -Arene complexes of rhodium and platinum have been characterized structurally and studied in the context of their likely intermediacy in the oxidative addition of arene C-H bonds. ... [Pg.56]

Allyl Complexes. Allyl complexes of thorium have been known since the 1960s and are usually stabilized by cyclopentadienyl ligands. AEyl complexes can be accessed via the interaction of a thorium haUde and an aHyl grignard. This synthetic method was utilized to obtain a rare example of a naked aHyl complex, Th(Tj -C2H )4 [144564-74-9] which decomposes at 0°C. This complex, when supported on dehydroxylated y-alumina, is an outstanding heterogeneous catalyst for arene hydrogenation and rivals the most active platinum metal catalysts in activity (17,18). [Pg.43]

The coordination chemistry of tertiary phosphine-functionalized calix[4]arenes have been described.279 Treatment of a bis(diphenylphosphino) or bis(dimethylphosphino) derivative of calix[4]arene with [PtCl2(COD)] leads to the formation of the corresponding dichloroplatinum(II) complex. The related diplatinum(II) species has also been reported with the tetrafunctionalized calix[4]arene.280 The mononuclear derivative is susceptible to oligomerization if the two free phosphine ligands are not oxidized or complexed to another metal center such as gold(I).279 The platinum(II) coordination chemistry of a mono-281 and diphosphite282 derived calix[ ]arene (n = 4 and 6, respectively) has also been described. [Pg.707]

For each case we will also present catalytic analogues, namely (1) the activation of methane to form methanol with platinum, the reaction of certain aromatics with palladium to give alkene-substituted aromatics, and (2) the alkylation of aromatics with ruthenium catalysts, and the borylation of alkanes and arenes with a variety of metal complexes. [Pg.388]

Heterometal alkoxide precursors, for ceramics, 12, 60-61 Heterometal chalcogenides, synthesis, 12, 62 Heterometal cubanes, as metal-organic precursor, 12, 39 Heterometallic alkenes, with platinum, 8, 639 Heterometallic alkynes, with platinum, models, 8, 650 Heterometallic clusters as heterogeneous catalyst precursors, 12, 767 in homogeneous catalysis, 12, 761 with Ni—M and Ni-C cr-bonded complexes, 8, 115 Heterometallic complexes with arene chromium carbonyls, 5, 259 bridged chromium isonitriles, 5, 274 with cyclopentadienyl hydride niobium moieties, 5, 72 with ruthenium—osmium, overview, 6, 1045—1116 with tungsten carbonyls, 5, 702 Heterometallic dimers, palladium complexes, 8, 210 Heterometallic iron-containing compounds cluster compounds, 6, 331 dinuclear compounds, 6, 319 overview, 6, 319-352... [Pg.118]

Molybdenum trioxide, intercalation into, 12, 823 Molybdocenes, as anticancer agents, 1, 892 MOMNs, see Metal-organometallic coordination networks Monisocyanides, with silver(I) complexes, 2, 223 Monitoring methods, kinetic studies, 1, 513 Mono(acetylacetonate) complexes, with Ru and Os halfsandwich rf-arenes, 6, 523 tj2-Monoalkene monodentate ligands, with platinum divalent derivatives, 8, 617 tetravalent derivatives, 8, 625 theoretical studies, 8, 625 zerovalent derivatives, 8, 612... [Pg.147]

Laboratory in Oxford, and Geoffrey Ozin at the University of Toronto in the early 1970s. With the metal atom cocondensation technique (which as described in Chaps. 6 and 7 was also used to prepare a series of zerovalent arene and olefin metal complexes), they reported simultaneously that the elusive palladium and platinum tetracarbonyls, Pd(CO)4 and Pt(CO)4, as well as the coordinatively unsaturated fragments M(CO)3, M(CO)2, and M(CO) (M = Pd, Pt) were formed by cocondensation reactions of Pd and Pt atoms with CO in inert gas matrices at 4-10 K [119-122]. The comparison of the CO bond stretching force constants for Pd(CO)ra and Pt(CO)ra (n - 1-4) revealed that, in analogy to Ni(CO) , the most stable compounds were the tetracarbonyls. In a xenon matrix, Pd(CO)4 existed up to about 80 K [120]. Ozin s group as well as others... [Pg.104]

Examples of non-platinum metal hydrogenation catalysts include (arene)-chromiumtricarbonyls which will hydrogenate dienes, alkynes, and so on, while ReH7(PCy3)2 will selectively hydrogenate acenaphthalene. Lanthanides and early transition metals are discussed later. Those catalysts operate via non-radical processes, but a few systems are known to involve radical reactions. The complex [CoH(CN)5]3 is a water-soluble catalyst that is selective for the hydrogenation of ajS-unsaturated compounds. [Pg.1230]

Vinyl halides add to allylic amines in the presence of Ni(cod)2 where cod=l, 5-cyclooctodine, followed by reduction with sodium borohydride. Aryl iodides add to alkynes using a platinum complex in conjunction with a palladium catalyst. A palladium catalyst has been used alone for the same purpose, and the intramolecular addition of a arene to an aUcene was accomplished with a palladium or a GaCl3 catalyst, " AUcyl iodides add intramolecularly to aUcenes with a titanium catalyst, or to alkynes using indium metal and additives. The latter cyclization of aryl iodides to alkenes was accomplished with indium and iodine or with Sml2. " ... [Pg.1100]

Little is known about the chemical nature of the recently isolated carbon clusters (C o> C70, Cg4, and so forth). One potential application of these materials is as highly dispersed supports for metal catalysts, and therefore the question of how metal atoms bind to C40 is of interest. Reaction of C o with organometallic ruthenium and platinum re nts has shown that metals can be attached directly to the carbon framework. Ihe native geometry of transition metal, and an x-ray difi action analysis of the platinum complex [(CgHg)3P]2Pt( () -C6o) C4HgO revealed a structure similar to that known for [(C4Hs)3P]2Pt( n -ethylene). The reactivity of C40 is not like that of relatively electron-rich planar aromatic molecules su( as benzene. The carbon-carbon double bonds of C40 react like those of very electron-deficient arenes and alkcnes. [Pg.195]

Prior to 1982, Crabtree s report of the reaction of cyclopentane with a solvated IrH2(PPh3)2+ species to give a cyclopentadienyl-iridium product stood as the only well characterized example of a reaction of an alkane with a homogeneous transition metal, in contrast to the widespread reactivity of arenes [2]. Based upon the instability of the platinum methyl hydride complex Pt(PPh3)2(CH3)H, it was believed that alkane oxidative addition might not be a thermodynamically feasible process, and consequently few attempts were made to attempt such a reaction [3]. It was not until the discovery of the formation of stable alkane oxidative addition products in 1982 that it was realized that reactions of hydrocarbons were in fact feasible. [Pg.11]


See other pages where Metal-arene complexes platinum is mentioned: [Pg.419]    [Pg.419]    [Pg.10]    [Pg.69]    [Pg.261]    [Pg.343]    [Pg.3367]    [Pg.3366]    [Pg.18]    [Pg.907]    [Pg.275]    [Pg.662]    [Pg.61]    [Pg.559]    [Pg.957]    [Pg.1]    [Pg.114]    [Pg.16]    [Pg.46]    [Pg.57]    [Pg.456]    [Pg.48]    [Pg.107]    [Pg.198]    [Pg.764]    [Pg.47]    [Pg.3569]    [Pg.379]    [Pg.93]    [Pg.192]    [Pg.109]    [Pg.134]    [Pg.3568]    [Pg.379]    [Pg.267]   
See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Arene complexe

Arene complexes

Arene-platinum complex

Arenes complexes

Arenes metal complexes

Arenes metalation

Arenes metalations

Arenes metallation

Metal arene

Metal arenes

Metal platinum

Metal-arene complexes

Metalated arenes

Metalation arene

Platinum metal complexes

© 2024 chempedia.info