Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal-activated oxygen

Bakac, A. Kinetic and mechanistic studies of the reactions of transition metal-activated oxygen with inorganic substrates. Coord. Chem. Rev. 2006, 250, 2046-2058. [Pg.180]

In the light of this preamble, precedents will be examined for three different, possible modes of reaction of metal-activated oxygen. [Pg.198]

However, because of the high temperature nature of this class of peroxides (10-h half-life temperatures of 133—172°C) and their extreme sensitivities to radical-induced decompositions and transition-metal activation, hydroperoxides have very limited utiUty as thermal initiators. The oxygen—hydrogen bond in hydroperoxides is weak (368-377 kJ/mol (88.0-90.1 kcal/mol) BDE) andis susceptible to attack by higher energy radicals ... [Pg.227]

The commercial product is a powder containing a minimum of 96% Na202 and approximately 20% active oxygen. It is made commercially by oxidizing the molten metal with either oxygen or air enriched in oxygen. Early industrial history (1) and manufacturing details (3) are available. Sodium... [Pg.90]

Alkyl hydroperoxides can be Hquids or soHds. Those having low molecular weight are soluble in water and are explosive in the pure state. As the molecular weight increases, ie, as the active oxygen content is reduced, water solubiUty and the violence of decomposition decrease. Alkyl hydroperoxides are stronger acids than the corresponding alcohols and have acidities similar to those of phenols, Alkyl hydroperoxides can be purified through their alkali metal salts (28). [Pg.103]

As the system passes from the active to the passive state the initial interaction depends on the composition of the aqueous phaseAn initial chemisorbed state on Fe, Cr and Ni has been postulated in which the adsorbed oxygen is abstracted from the water molecules. This has features in common with the metal/gaseous oxygen interaction mentioned previously. With increase in anodic potential a distinct phase oxide or other film substance emerges at thicknesses of 1-4 nm. Increase in the anodic potential may lead to the sequence... [Pg.28]

In the very early stages of oxidation the oxide layer is discontinuous both kinetic and electron microscope" studies have shown that oxidation commences by the lateral extension of discrete oxide nuclei. It is only once these interlace that the direction of mass transport becomes of importance. In the majority of cases the metal then diffuses across the oxide layer in the form of cations and electrons (cationic diffusion), or as with the heavy metal oxides, oxygen may diffuse as ions with a flow of electrons in the reverse direction (anionic diffusion). The number of metals oxidising by both cationic and anionic diffusion is believed to be small, since a favourable energy of activation for one ion generally means an unfavourable value for the other... [Pg.270]

There are several available terminal oxidants for the transition metal-catalyzed epoxidation of olefins (Table 6.1). Typical oxidants compatible with most metal-based epoxidation systems are various alkyl hydroperoxides, hypochlorite, or iodo-sylbenzene. A problem associated with these oxidants is their low active oxygen content (Table 6.1), while there are further drawbacks with these oxidants from the point of view of the nature of the waste produced. Thus, from an environmental and economical perspective, molecular oxygen should be the preferred oxidant, because of its high active oxygen content and since no waste (or only water) is formed as a byproduct. One of the major limitations of the use of molecular oxygen as terminal oxidant for the formation of epoxides, however, is the poor product selectivity obtained in these processes [6]. Aerobic oxidations are often difficult to control and can sometimes result in combustion or in substrate overoxidation. In... [Pg.186]

Table 6.1 Oxidants used in transition metal-catalyzed epoxida-tions, and their active oxygen content. Table 6.1 Oxidants used in transition metal-catalyzed epoxida-tions, and their active oxygen content.
It is so universally applied that it may be found in combination with metal oxide cathodes (e.g., HgO, AgO, NiOOH, Mn02), with catalytically active oxygen electrodes, and with inert cathodes using aqueous halide or ferricyanide solutions as active materials ("zinc-flow" or "redox" batteries). The cell (battery) sizes vary from small button cells for hearing aids or watches up to kilowatt-hour modules for electric vehicles (electrotraction). Primary and storage batteries exist in all categories except that of flow-batteries, where only storage types are found. Acidic, neutral, and alkaline electrolytes are used as well. The (simplified) half-cell reaction for the zinc electrode is the same in all electrolytes ... [Pg.199]

Under aqueous conditions, flavonoids and their glycosides will also reduce oxidants other than peroxyl radicals and may have a role in protecting membranal systems against pro-oxidants such as metal ions and activated oxygen species in the aqueous phase. Rate constants for reduction of superoxide anion show flavonoids to be more efficient than the water-soluble vitamin E analogue trolox (Jovanovic et al, 1994), see Table 16.1. [Pg.321]

Zinc oxide is made either by the oxidation of the metal in oxygen (the indirect, IP, or French process), by the direct decomposition of zinc ores in air (the direct or American process) or by the thermal decomposition of zinc salts (TD zinc oxide). IP zinc oxides differ from TD zinc oxides in that their surfaces do not contain absorbed water. Also, whereas TD zinc oxide reacts with plain eugenol, IP zinc oxide hardly reacts unless activated by an acetic add or zinc acetate accelerator (Table 9.2). [Pg.328]

Passivation looks different when observed under galvanostatic conditions (Fig. 16.2b). The passive state will be attained after a certain time t when an anodic current which is higher than is applied to an active electrode. As the current is fixed by external conditions, the electrode potential at this point undergoes a discontinuous change from E to Ey, where transpassive dissolution of the metal or oxygen evolution starts. The passivation time t will be shorter the higher the value of i. Often, these parameters are interrelated as... [Pg.306]

Injury to cells and tissues may enhance the toxicity of the active oxygen species by releasing intracellular transition metal ions (such as iron) into the surrounding tissue from storage sites, decompartmentalized haem proteins, or metalloproteins by interaction with delocalized proteases or oxidants. Such delocalized iron and haem proteins have the capacity to decompose peroxide to peroxyl and alkoxyl radicals, exacerbating the initial lesion. [Pg.45]

The function of the metal site in the oxygen-dependent radical enzymes galactose oxidase, amine oxidases, ribonucleotide reductase, and cytochrome c oxidase is inter alia to bind 02 in their reduced forms and undergo the appropriate redox chemistry to generate a metal-bound, activated oxygen species of variable nature. [Pg.158]


See other pages where Metal-activated oxygen is mentioned: [Pg.1]    [Pg.1]    [Pg.1]    [Pg.1]    [Pg.478]    [Pg.95]    [Pg.375]    [Pg.263]    [Pg.1129]    [Pg.205]    [Pg.187]    [Pg.262]    [Pg.353]    [Pg.248]    [Pg.363]    [Pg.117]    [Pg.118]    [Pg.128]    [Pg.47]    [Pg.1947]    [Pg.141]    [Pg.848]    [Pg.720]    [Pg.825]    [Pg.828]    [Pg.833]    [Pg.834]    [Pg.32]    [Pg.159]    [Pg.184]    [Pg.343]    [Pg.347]    [Pg.357]    [Pg.358]    [Pg.438]    [Pg.65]   


SEARCH



Activated oxygen

Active oxygen

Metal oxygen

Oxygen activation

Oxygen activators

Oxygen metal activation

© 2024 chempedia.info