Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metabolic pathway pentose-phosphate

M5. Marks, P. A., A newer pathway of carbohydrate metabolism the pentose phosphate pathway. Diabetes 5, 276-283 (1956). [Pg.304]

Crassulacean acid metabolism (CAM) pentose phosphate pathway... [Pg.857]

Figure 8.4 Biosynthetic potentiai of Pseudomonas putida. Extended carbon core metabolism of Pseudomonas putida KT2440 including the major catabolic routes of Entner-Doudoroff pathway, Embden-Meyerhof-Parnas pathway, pentose phosphate pathway, tricarboxylic acid cycle, glyoxylate shunt, anaplerotic reactions, fatty acid de novo biosynthesis, p-oxidation of fatty acids, as well as the convergent -ketoadipate pathway for catabolism of aromatics. Known pathways for respective precursor supply for the broad product spectrum of P. putida KT2440 are indicated by light red arrows. Natural products and substrates are highlighted in black, heterologous products and substrates In red. Figure 8.4 Biosynthetic potentiai of Pseudomonas putida. Extended carbon core metabolism of Pseudomonas putida KT2440 including the major catabolic routes of Entner-Doudoroff pathway, Embden-Meyerhof-Parnas pathway, pentose phosphate pathway, tricarboxylic acid cycle, glyoxylate shunt, anaplerotic reactions, fatty acid de novo biosynthesis, p-oxidation of fatty acids, as well as the convergent -ketoadipate pathway for catabolism of aromatics. Known pathways for respective precursor supply for the broad product spectrum of P. putida KT2440 are indicated by light red arrows. Natural products and substrates are highlighted in black, heterologous products and substrates In red.
In bacteria, the metabolism of o-xylose uptake is quite different from the one for D-glucose, which occurs by the Embden-Meyerhof-Pamas pathway (Jeffries 1983). D-xylose is degraded by the pentose phosphate pathway (PPP) (also called hexose monophosphate pathway, pentose phosphate shtmt, phosphogluconate pathway) after being transported into the cell. Once inside the cell, it is either isomerized or reduced and then reoxidized to form o-xylulose. Further steps lead to phosphory-lated 3-, 4-, 5-, 6-, and 7-carbon sugars. Intermediates can then be used by other metabolic pathways to produce nucleic acids, aromatic amino acids, hpids, and other metabolic end products (Jeffries 1983). [Pg.95]

This is not the place to expose in detail the problems and the solutions already obtained in studying biochemical reaction networks. However, because of the importance of this problem and the great recent interest in understanding metabolic networks, we hope to throw a little light on this area. Figure 10.3-23 shows a model for the metabolic pathways involved in the central carbon metabolism of Escherichia coli through glycolysis and the pentose phosphate pathway [22]. [Pg.562]

Figure 10.3-23. Metabolic model of glycolysis and tbe pentose phosphate pathway in E. coli. Squares Indicate enzyme activities circles indicate regulatory effects,... Figure 10.3-23. Metabolic model of glycolysis and tbe pentose phosphate pathway in E. coli. Squares Indicate enzyme activities circles indicate regulatory effects,...
Most of the enzymes mediating the reactions of the Calvin cycle also participate in either glycolysis (Chapter 19) or the pentose phosphate pathway (Chapter 23). The aim of the Calvin scheme is to account for hexose formation from 3-phosphoglycerate. In the course of this metabolic sequence, the NADPH and ATP produced in the light reactions are consumed, as indicated earlier in Equation (22.3). [Pg.733]

Gluconeogenesis, Glycogen Metabolism, and the Pentose Phosphate Pathway... [Pg.742]

Cells require a constant supply of N/ X)PH for reductive reactions vital to biosynthetic purposes. Much of this requirement is met by a glucose-based metabolic sequence variously called the pentose phosphate pathway, the hexose monophosphate shunt, or the phosphogluconate pathway. In addition to providing N/VDPH for biosynthetic processes, this pathway produces ribos 5-phosphate, which is essential for nucleic acid synthesis. Several metabolites of the pentose phosphate pathway can also be shuttled into glycolysis. [Pg.762]

To this point, the pathway has generated a pool of pentose phosphates. The AG° for each of the last two reactions is small, and the three pentose-5-phosphates coexist at equilibrium. The pathway has also produced two molecules of N/ DPH for each glucose-6-P converted to pentose-5-phosphate. The next three steps rearrange the five-carbon skeletons of the pentoses to produce three-, four-, six-, and seven-carbon units, which can be used for various metabolic purposes. Why should the cell do this Very often, the cellular need for... [Pg.765]

BOTH RIBOSE-5-P AND NADPH ARE NEEDED BY THE CELL In this case, the first four reactions of the pentose phosphate pathway predominate (Figure 23.37). N/VDPH is produced by the oxidative reactions of the pathway, and ribose-5-P is the principal product of carbon metabolism. As stated earlier, the net reaction for these processes is... [Pg.769]

The following compound is an intermediate in the pentose phosphate pathway, an alternative route for glucose metabolism. Identify the sugar it is derived from. [Pg.1172]

Several enzymes of the intermediary metabolism require thiaminpyrophosphate (TPP, Fig. 1) as coenzyme, e.g., enzymes of the pyruvate dehydrogenase complex, a-ketoglutarate dehydrogenase complex, or pentose phosphate pathway. [Pg.1288]

TPP-dependent enzymes are involved in oxidative decarboxylation of a-keto acids, making them available for energy metabolism. Transketolase is involved in the formation of NADPH and pentose in the pentose phosphate pathway. This reaction is important for several other synthetic pathways. It is furthermore assumed that the above-mentioned enzymes are involved in the function of neurotransmitters and nerve conduction, though the exact mechanisms remain unclear. [Pg.1288]

Generally, NAD-linked dehydrogenases catalyze ox-idoreduction reactions in the oxidative pathways of metabolism, particularly in glycolysis, in the citric acid cycle, and in the respiratory chain of mitochondria. NADP-linked dehydrogenases are found characteristically in reductive syntheses, as in the extramitochon-drial pathway of fatty acid synthesis and steroid synthesis—and also in the pentose phosphate pathway. [Pg.87]

D-Ribulose Formed in metabolic processes. Ribulose phosphate is an intermediate in pentose phosphate pathway. ... [Pg.105]

Pathways are compartmentalized within the cell. Glycolysis, glycogenesis, glycogenolysis, the pentose phosphate pathway, and fipogenesis occur in the cytosol. The mitochondrion contains the enzymes of the citric acid cycle, P-oxidation of fatty acids, and of oxidative phosphorylation. The endoplasmic reticulum also contains the enzymes for many other processes, including protein synthesis, glycerofipid formation, and dmg metabolism. [Pg.129]

Glucose 6-phosphate is an important compound at the junction of several metabolic pathways (glycolysis, gluconeogenesis, the pentose phosphate pathway, glycogenosis, and glycogenolysis). In glycolysis, it is converted to fructose 6-phosphate by phosphohexose-isomerase, which involves an aldose-ketose isomerization. [Pg.137]

The Pentose Phosphate Pathway Other Pathways of Hexose Metabolism... [Pg.163]

The pentose phosphate pathway is an alternative route for the metabolism of glucose. It does not generate ATP but has two major functions (1) The formation of NADPH for synthesis of fatty acids and steroids and (2) the synthesis of ribose for nucleotide and nucleic acid formation. Glucose, fructose, and galactose are the main hexoses absorbed from the gastrointestinal tract, derived principally from dietary starch, sucrose, and lactose, respectively. Fructose and galactose are converted to glucose, mainly in the liver. [Pg.163]

THE PENTOSE PHOSPHATE PATHWAY OTHER PATHWAYS OF HEXOSE METABOLISM / 165... [Pg.165]

Glucuronate is reduced to L-gulonate in an NADPH-dependent reaction L-gulonate is the direct precursor of ascorbate in those animals capable of synthesizing this vitamin. In humans and other primates as well as guinea pigs, ascorbic acid cannot be synthesized because of the absence of L-g ulonolactone oxidase. L-Gulonate is metabolized ultimately to D-xylulose 5-phosphate, a constituent of the pentose phosphate pathway. [Pg.167]

Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)... Figure 25-7. Metabolism of adipose tissue. Hormone-sensitive lipase is activated by ACTH, TSH, glucagon, epinephrine, norepinephrine, and vasopressin and inhibited by insulin, prostaglandin E, and nicotinic acid. Details of the formation of glycerol 3-phosphate from intermediates of glycolysis are shown in Figure 24-2. (PPP, pentose phosphate pathway TG, triacylglycerol FFA, free fatty acids VLDL, very low density lipoprotein.)...

See other pages where Metabolic pathway pentose-phosphate is mentioned: [Pg.255]    [Pg.255]    [Pg.22]    [Pg.650]    [Pg.90]    [Pg.211]    [Pg.587]    [Pg.768]    [Pg.289]    [Pg.163]   
See also in sourсe #XX -- [ Pg.413 , Pg.414 , Pg.416 , Pg.421 ]




SEARCH



Metabolic pathways

Metabolism Metabolic pathway

Metabolism pathway

Pentose phosphate pathway

Pentoses metabolism

© 2024 chempedia.info