Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury reaction with alkenes

A number of metals salts can be used as the source of electrophiles in reactions with alkenes. One of the most interesting of these involves the attack of mercury(II) acetate in acetic acid. Reductive cleavage of the organomercury compound with sodium borohydride leads to the overall hydration of the alkene in a Markownikoff sense. There are a number of preparative advantages, such as a reduced tendency to rearrange, associated with this and similar relatively mild procedures when compared to the direct protonation of a double bond (Scheme 3.14)... [Pg.70]

The reaction of alkenyl mercurials with alkenes forms 7r-allylpalladium intermediates by the rearrangement of Pd via the elimination of H—Pd—Cl and its reverse readdition. Further transformations such as trapping with nucleophiles or elimination form conjugated dienes[379]. The 7r-allylpalladium intermediate 418 formed from 3-butenoic acid reacts intramolecularly with carboxylic acid to yield the 7-vinyl-7-laCtone 4I9[380], The /i,7-titisaturated amide 421 is obtained by the reaction of 4-vinyl-2-azetidinone (420) with an organomercur-ial. Similarly homoallylic alcohols are obtained from vinylic oxetanes[381]. [Pg.81]

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HC1 to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(ll) catalyst. The reaction leads to an intermediate enol that immediately isomerizes to yield a ketone tautomer. Since the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration/oxidation of a terminal alkyne yields an aldehyde. [Pg.279]

Perlmutter used an oxymercuration/demercuration of a y-hydroxy alkene as the key transformation in an enantioselective synthesis of the C(8 ) epimeric smaller fragment of lb (and many more pamamycin homologs cf. Fig. 1) [36]. Preparation of substrate 164 for the crucial cyclization event commenced with silylation and reduction of hydroxy ester 158 (85-89% ee) [37] to give aldehyde 159, which was converted to alkenal 162 by (Z)-selective olefination with ylide 160 (dr=89 l 1) and another diisobutylaluminum hydride reduction (Scheme 22). An Oppolzer aldol reaction with boron enolate 163 then provided 164 as the major product. Upon successive treatment of 164 with mercury(II) acetate and sodium chloride, organomercurial compound 165 and a second minor diastereomer (dr=6 l) were formed, which could be easily separated. Reductive demercuration, hydrolytic cleavage of the chiral auxiliary, methyl ester formation, and desilylation eventually led to 166, the C(8 ) epimer of the... [Pg.233]

Radical intermediates are also trapped by intramolecular reaction with an alkene or alkyne bond. At a mercury cathode this process competes with formation of the dialkylmercury [51], At a reticulated vitreous carbon cathode, this intramolecular cyclization of radicals generated by reduction of iodo compounds is an important process. Reduction of l-iododec-5-yne 5 at vitreous carbon gives the cyclopentane... [Pg.102]

That the mercurial species released during the ring-closure step can, at least with some mercury(ll) salts, recycle and act catalytically is shown by the finding that mercury (II) trifluoroacetate, used in 0.1 M proportions (and even lower), in aqueous acetone at room temperature catalyzes the reaction of alkene 43 (R1 = Me, R2 = R3 = Bn, R4 = Ac a-isomer), and gives the cyclized products in 96% yield as a mixture of the alcohol 46 (R2 = R3 = Bn, R4 = Ac) and its epimer at the alcohol center, in the ratio 8 1 [24]. [Pg.578]

The effect of the nature of the electrophile on the stereoselectivity of reactions with substrates containing a terminal alkene and an allylic substituent is dramatically illustrated by some recent results with palladium electrophiles.124 Cyclizations of 3-methyl- or 3-phenyl-5-hydroxyalkenes with palladium catalysts proceed with high selectivity (>9 1) for the 2,3-trans isomer (equation 41).50-124 It is suggested that the steric interactions of the palladium-alkene complex affects the stereochemistry of these cyclizations. In some related cyclizations to form tetrahydropyran products (equation 42 and Table 10), reaction with iodine in the presence of sodium bicarbonate gives a different major diastereomer from cyclization with mercury(II) trifluoroacetate or palladium chloride.123... [Pg.380]

Vinyl substitution occurs with conjugated dienes as well as with alkenes, employing aryl-, vinyl-, methyl-, alkoxycarbonyl- or benzyl-mercury reagents and lithium tetrachloropalladate(II), but the products are usually rr-allylpalladium complexes if the reactions are carried out under mild conditions (equation 8).24,25 The ir-allylic complexes may be decomposed thermally to substituted dienes26 or reacted with nucleophiles to form allylic derivatives of the nucleophile. Secondary amines, for example, react to give tertiary allylic amines in modest yields, along with dienes and reduced dienes (equation 9).25... [Pg.839]

Over the last two decades Russian workers have uncovered a host of interesting SE reactions with retention at an alkene center (Reutov, 1967b). These have involved exchanges with mercury, lead, tin, thallium, etc. attached to an alkene carbon ... [Pg.267]

The reaction between mercury(ll) salts and alkenes is the most important general method for the synthesis of organomercurials. Although there are some examples where mercury reacts directly with olefins to prodnce vinyl mercurials, the most coimnon reaction is the addition of mercury to the alkene s double bond with the participation of a nucleophile (equation 9). [Pg.2599]

Table 2. (i-Acetylamino Mercury(n) Chlorides by Reaction of Alkenes with Hg(NOs)2 and Acetonitrile, Hydrolysis and Treatment with Sodium Chloride32... [Pg.798]


See other pages where Mercury reaction with alkenes is mentioned: [Pg.718]    [Pg.718]    [Pg.718]    [Pg.264]    [Pg.98]    [Pg.362]    [Pg.465]    [Pg.106]    [Pg.110]    [Pg.58]    [Pg.300]    [Pg.301]    [Pg.435]    [Pg.33]    [Pg.61]    [Pg.362]    [Pg.92]    [Pg.533]    [Pg.2604]    [Pg.92]    [Pg.533]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Mercury alkenes

Mercury reaction

Mercury reactions with

Reaction with alkenes

© 2024 chempedia.info