Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mercury melting point

Most metallic elements exhibit the shiny luster we associate with metals ( FIGURE 7.13). Metals conduct heat and electricity. In general they are malleable (can be pounded into thin sheets) and ductile (can be drawn into wires). AU are solids at room temperature except mercury (melting point = —39 °C), which is a Uquid at room temperature. Two metals melt at slightly above room temperature, cesium at 28.4 °C and gallium at 29.8 °C. At the other extreme, many metals melt at very high temperatures. For example, chromium melts at 1900 °C. [Pg.265]

Table 14.2 shows that all three elements have remarkably low melting points and boiling points—an indication of the weak metallic bonding, especially notable in mercury. The low heat of atomisation of the latter element compensates to some extent its higher ionisation energies, so that, in practice, all the elements of this group can form cations in aqueous solution or in hydrated salts anhydrous mercuryfll) compounds are generally covalent. [Pg.434]

Corrected Melting-points. In all the above determinations of melting-points, the values obtained are described as uncorrected, since no allowance has been made for the fact that the column of mercury in the thermometer is at a lower temperature than that in the bulb. For most purposes it is sufficient to record this uncorrected value, which is usually only slightly lower than the corrected value. [Pg.6]

The comparatively inexpensive long-scale thermometer, widely used by students, is usually calibrated for complete immersion of the mercury column in the vapour or liquid. As generally employed for boiling point or melting point determinations, the entire column is neither surrounded by the vapour nor completely immersed in the liquid. The part of the mercury column exposed to the cooler air of the laboratory is obviously not expanded as much as the bulk of the mercury and hence the reading will be lower than the true temperature. The error thus introduced is not appreciable up to about 100°, but it may amount to 3-5° at 200° and 6-10° at 250°. The error due to the column of mercury exposed above the heating bath can be corrected by adding a stem correction, calculated by the formula ... [Pg.72]

It is useful to measure the melting point of the solid resins. This can be done either by the ring and ball technique or by Durrans mercury method. In the latter method a known weight of resin is melted in a test tube of fixed dimensions. The resin is then cooled and it solidifies. A known weight of clean mercury is then poured on to the top of the resin and the whole assembly heated, at a fixed rate, until the resin melts and the mercury runs through the resin. The temperature at which this occurs is taken as the melting point. [Pg.750]

Chlorine dioxide is a yellow-green gas and soluble in water at room temperature to about 2.9 g/1 chlorine dioxide (at 30 mm mercury partial pressure) or more than 10 g/1 in chilled water. The boiling point of liquid chlorine dioxide is 11° C the melting point is - 59° C. Chlorine dioxide gas has a specific gravity of 2.4. The oxidant is used in a water solution and is five times more soluble in water than... [Pg.472]

From the ventilation point of view, the fixed points -38.83 °C (triple-point of mercury), 0.010 °C (triple-point of water), 29.76 °C (melting point of gallium), and 156.60 °C (freezing point of indium) are of relevance. The triple-point of water is relatively simple to achieve and maintain with a triple-point apparatus. Some freezing point cells are covered in standards. In practical temperature calibration of measuring instruments, the lTS-90 fixed points are not used directly. [Pg.1140]

A 500-ml three-necked flask is fitted with a mechanical stirrer, a thermometer, a gas outlet, and a gas inlet tube dipping into the solution. The flask is charged with a solution of cyanuric acid (15 g, 0.116 mole) dissolved in 300 ml of 5% aqueous potassium hydroxide solution. The flask is cooled in an ice-salt bath with stirring to 0° and irradiated with a mercury lamp. A rapid stream of chlorine is passed into the flask (approx. 5 ml/sec), whereupon a heavy white precipitate forms. The addition of gas is continued until the solid material no longer forms (approx. 2 hours). The flask is briefly flushed with air, the product is collected by suction filtration in an ice-cooled funnel, and the residue washed with several small portions of cold water. Since it undergoes slow hydrolysis, the product should be dried in a vacuum oven. The crude product has a variable melting point (195-225°) the yield is about 20 g (approx. 75%). [Pg.157]

The white precipitate which forms is filtered and dried at 80°C, yielding 45 g of chloro-mercuri acid (= 89% of the theory), MP 106° to 109°C (decomp.). This compound is finally obtained in analytically pure form and with a constant melting point by two recrystallizations from acetone-water giving a MP of 131° to 132°C with decomposition. [Pg.949]

Steels and austenitic stainless steels are susceptible to molten zinc, copper, lead and other metals. Molten mercury, zinc and lead attack aluminum and copper alloys. Mercury, zinc, silver and others attack nickel alloys. Other low-melting-point metals that can attack common constructional materials include tin, cadmium, lithium, indium, sodium and gallium. [Pg.895]

From the rate of diffusion of radioactive Pb in molten lead, Andrade estimated that it takes an atom about 2 X 10 u second to move a distance equal to its own diameter.1 If the period of atomic vibration is 5 X 10 ,s second, this time is equivalent to idK)lit 40 atomic vibrations. From the considerations brought forward by Andrade, it appears that the same estimates would apply to liquid mercury above its melting point—that is, near room temperature. When we ask how often the particles of such a liquid change neighbors, it is clear that the rate of turnover is extremely large. If, for example, in (37) we set r0 equal to 1010 second, the chance that two particles remain in contact for as long as 7 X 10-10 second is less than one in a thousand. [Pg.56]

Wc have seen that molecular substances tend to have low melting points, while network, ionic, and metallic substances tend to have high melting points. Therefore, with a few exceptions, such as mercury, a substance that is liquid at room temperature is likely to he a molecular substance. Liquid solvents are heavily used in industry to extract substances from natural products and ro promote the synthesis of desired compounds. Because many of these solvents have high vapor pressures and so give off hazardous fumes, luinids that have low vapor pressures hut dissolve... [Pg.17]

The volatile metal is separated by distillation and condensed. Mercury is the only metallic element that is liquid at room temperature (gallium and cesium are liquids on warm days). It has a long liquid range, from its melting point of — 39°C to its boiling point of 357°C, and so it is well suited for its use in thermometers, silent electrical switches, and high-vacuum pumps. [Pg.788]

Boiling Point. Such points/ranges are distinguished from melting points and ranges by the presence of a pressure in millimeters of mercury (mmHg) after the temperature for example, 97-98/0.5. [Pg.359]

Obviously this method is limited to liquid metals like mercury and gallium and their amalgams respectively alloys. Modifications of this method have been reported [86FIor]. At elevated temperatures with molten salt electrolytes alloys with an appropriately low melting point can be investigated, too. [Pg.184]

C14-0050. Table lists molar enthalpies of fusion of several substances. Calculate the molar entropy of fusion at its normal melting point for each of the following (a) argon (b) methane (c) ethanol and (d) mercury. [Pg.1034]

Air or water cooled mercury discharge lamps find many uses, one of the more obvious of which is the study of photochemical reactions. These lamps are usually made of vitreous silica because of its low thermal expansion, high melting point and its transparency to ultraviolet radiation. Their operating pressure has a profound effect on the spectral distribution of the radiation produced and therefore it is important to consider the requirements in the design of such lamps. [Pg.177]


See other pages where Mercury melting point is mentioned: [Pg.33]    [Pg.452]    [Pg.30]    [Pg.313]    [Pg.251]    [Pg.4]    [Pg.274]    [Pg.33]    [Pg.452]    [Pg.30]    [Pg.313]    [Pg.251]    [Pg.4]    [Pg.274]    [Pg.13]    [Pg.435]    [Pg.77]    [Pg.43]    [Pg.468]    [Pg.33]    [Pg.197]    [Pg.1140]    [Pg.211]    [Pg.480]    [Pg.727]    [Pg.1293]    [Pg.245]    [Pg.136]    [Pg.446]    [Pg.20]    [Pg.622]    [Pg.777]    [Pg.596]    [Pg.194]    [Pg.225]    [Pg.1430]    [Pg.401]   
See also in sourсe #XX -- [ Pg.570 ]

See also in sourсe #XX -- [ Pg.134 , Pg.135 ]

See also in sourсe #XX -- [ Pg.574 , Pg.575 ]




SEARCH



Melting point mercury, as function of pressure

© 2024 chempedia.info