Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Memory, mode coupling theory

Rostov, K.S. Freed, K.F., Mode coupling theory for calculating the memory functions of flexible chain molecules influence on the long time dynamics of oligoglycines, J. Chem. Phys. 1997,106, 771-783... [Pg.319]

The relaxation equations for the time correlation functions are derived formally by using the projection operator technique [12]. This relaxation equation has the same structure as a generalized Langevin equation. The mode coupling theory provides microscopic, albeit approximate, expressions for the wavevector- and frequency-dependent memory functions. One important aspect of the mode coupling theory is the intimate relation between the static microscopic structure of the liquid and the transport properties. In fact, even now, realistic calculations using MCT is often not possible because of the nonavailability of the static pair correlation functions for complex inter-molecular potential. [Pg.71]

Note that the above study is performed for a simple system. There exists a large body of literature on the study of diffusion in complex quasi-two-dimensional systems—for example, a collodial suspension. In these systems the diffusion can have a finite value even at long time. Schofield, Marcus, and Rice [17] have recently carried out a mode coupling theory analysis of a quasi-two-dimensional colloids. In this work, equations for the dynamics of the memory functions were derived and solved self-consistently. An important aspect of this work is a detailed calculation of wavenumber- and frequency-dependent viscosity. It was found that the functional form of the dynamics of the suspension is determined principally by the binary collisions, although the mode coupling part has significant effect on the longtime diffusion. [Pg.203]

It is well established that the principal results of the generalized kinetic theory, especially the functional form of the slow portion of the memory function, can be obtained also by a direct mode-coupling approach [18, 19, 20]. The basic idea behind the mode-coupling theory is that the fluctuation of a given dynamical variable decays, at intermediate and long times, predominantly into pairs of hydrodynamic modes associated with quasi-conserved dynamical variables. The possible decay channels of a fluctuation are determined by selection rules based, for example, on time-reversal symmetry or on physical considerations. [Pg.292]

So far we have employed the exponential model for the memory kernel appearing in the GLE for the density correlation functions. In [60] the model based on the mode-coupling theory described in Sec. 5.2.4is applied to the calculation of the longitudinal current spectra of the same diatomic liquid as discussed here. It is found that the essential features of the results remained the same as far as the collective dynamics is concerned. It is also demonstrated that the results are in fair agreement with those determined from the molecular dynamics simulation. [Pg.314]

A microscopic theory, the so-called mode coupling theory (MCT) [7,72], has been developed recently, based on an equation for the density autocorrelation function which contains a nonlinear memory function and gives some detailed... [Pg.105]

As per the prescription of Li et al., a simple way to get a combined theory is to assume that the total memory function of the correlator of interest is the sum of the mode coupling memory function and the Landau-de Gennes memory... [Pg.272]

In this chapter we have described a theory for dynamics of polyatomic fluids based on the memory-function formalism and on the interaction-site representation of molecular liquids. Approximation schemes for memory functions appearing in the generalized Langevin equation have been developed by assuming an exponential form for memory functions and by employing the mode-coupling approach. Numerical results were presented for longitudinal current spectra of a model diatomic liquid and water, and it has been discussed how the results can be interpreted in... [Pg.344]

In principle the memory kernel in the mode-coupling equation contains contributions from three particle correlations, however, for all systems studied so far in computer simulations, these only slightly modified the predictions of the theory and helped improve agreement between simulation and theory [31]. Also, there has been an extension of the theory taking chain connectivity into account [32] which improved agreement with the simulations of the bead-spring model, but it remains to be seen whether an application of this theory to the two models presented here can account for their strongly different dynamic behavior. [Pg.167]

The mode coupling approximation for m (0 yields a set of equations that needs to be solved self-consistently. Hereby the only input to the theory is the static equilibrium structure factor 5, that enters the memory kernel directly and via the direct correlation function that is given by the Ornstein-Zernicke expression = (1 - l/5,)/p, with p being the average density. In MCT, the dynamics of a fluid close to the glass transition is therefore completely determined by equilibrium quantities plus one time scale, here given by the short-time diffusion coefficient. The theory can thus make rather strong predictions as the only input, namely, the equilibrium structure factor, can often be calculated from the particle interactions, or even more directly can be taken from the simulations of the system whose dynamics is studied. [Pg.139]


See other pages where Memory, mode coupling theory is mentioned: [Pg.133]    [Pg.233]    [Pg.127]    [Pg.304]    [Pg.338]    [Pg.197]    [Pg.111]    [Pg.296]    [Pg.303]    [Pg.12]    [Pg.21]    [Pg.21]    [Pg.21]    [Pg.1086]   


SEARCH



Coupled mode theory

Coupled modes

Coupling theory

Mode coupling

© 2024 chempedia.info