Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Membrane receptors with associated tyrosine kinase

Membrane Receptors with Associated Tyrosine Kinase Activity... [Pg.358]

Membrane Receptors with Associated Tyrosine Kinase Activity 11.2.2.2 The Stat Proteins... [Pg.406]

Fig. 9.1. The Ras protein as a central switching station of signaling pathways. A main pathway for Ras activation is via receptor tyrosine kinases, which pass the signal on via adaptor proteins and guanine nucleotide exchange factors to the Ras protein. Activation ofRas protein can also be initiated via G-protein-coupled receptors and via transmembrane receptors with associated tyrosine kinase activity. The membrane association of the Ras protein (see Fig. 9.6) is not shown for clarity. In addition, not aU signahng pathways that contribute to activation of the Ras protein are shown, nor are all effector reactions. Py omplex of the heterotrimeric G proteins GAP GTPase activating protein GEF guanine nucleotide exchange factor. Fig. 9.1. The Ras protein as a central switching station of signaling pathways. A main pathway for Ras activation is via receptor tyrosine kinases, which pass the signal on via adaptor proteins and guanine nucleotide exchange factors to the Ras protein. Activation ofRas protein can also be initiated via G-protein-coupled receptors and via transmembrane receptors with associated tyrosine kinase activity. The membrane association of the Ras protein (see Fig. 9.6) is not shown for clarity. In addition, not aU signahng pathways that contribute to activation of the Ras protein are shown, nor are all effector reactions. Py omplex of the heterotrimeric G proteins GAP GTPase activating protein GEF guanine nucleotide exchange factor.
The insulin receptor is composed of two heterodimers each heterodimer is composed of an a unit and a P unit. The a unit is extracellular and contains the insulin recognition and binding sites the p unit spans the cellular membrane and contains a tyrosine kinase. Although insulin can bind to a single ap dimer, it binds with higher affinity to the aPaP tetrameric complex. When insulin binds to an a unit, the tyrosine kinase associated with the corresponding p unit is stimulated. Following this, intracellular proteins such as IRS-1 and IRS-2 (IRS=insulin receptor substrate) are phosphorylated by the P subunit tyrosine kinase, and they in turn activate a network of phosphorylations within the receptor cell. [Pg.365]

Fig. 6.4. Formation and function of diacylglycerol and Ins(l,4,5)P3. Formation of diacylglycerol (DAG) and Ins(l,4,5)P3 is subject to regulation by two central signaling pathways, which start from transmembrane receptors with intrinsic or associated tyrosine kinase activity (see Chapters 8 11) or from G-protein-coupled receptors. DAG activates protein kinase C (PKC, see Chapter 7), which has a regulatory effect on ceU proliferation, via phosphorylation of substrate proteins. Ins(l,4,5)P3 binds to corresponding receptors (InsPs-R) and induces release of Ca from internal stores. The membrane association of DAG, PtdIns(3,4)P2 and PL-C is not shown here, for clarity. Fig. 6.4. Formation and function of diacylglycerol and Ins(l,4,5)P3. Formation of diacylglycerol (DAG) and Ins(l,4,5)P3 is subject to regulation by two central signaling pathways, which start from transmembrane receptors with intrinsic or associated tyrosine kinase activity (see Chapters 8 11) or from G-protein-coupled receptors. DAG activates protein kinase C (PKC, see Chapter 7), which has a regulatory effect on ceU proliferation, via phosphorylation of substrate proteins. Ins(l,4,5)P3 binds to corresponding receptors (InsPs-R) and induces release of Ca from internal stores. The membrane association of DAG, PtdIns(3,4)P2 and PL-C is not shown here, for clarity.
In addition to receptor tyrosine kinases, the cell also contains a number of tyrosine-specific protein kinases that are not an integral component of transmembrane receptors. These nonreceptor tyrosine kinases are localized in the cytoplasm at least occasionally or they are associated with transmembrane receptors on the cytoplasmic side of the cell membrane. They are therefore also known as cytoplasmic tyrosine kinases. The nonreceptor tyrosine kinases perform essential functions in signal transduction via cytokine receptors (see Chapter 11) and T cell receptors, and in other signaling pathways. [Pg.309]

Cytokines all function using a group of transmembrane receptors embedded in the plasma membranes of target cells. The receptors have no tyrosine kinase activity but associate with and activate kinases known as Janus kinases (JAKs). These kinases phosphory-late tyrosine side chains in their receptors, and the phosphorylated receptors activate transcription factors of the STAT (signal transducer-activators of transcription) group.186-195 The specificity of cytokine action results from a combination of receptor recognition and recognition of the various STAT molecules by different JAKs.111 Cytokines have a variety of structures. Many are helix bundles or have (3 sheet structures (Fig. 30-6). [Pg.1847]

Fyn is a nonreceptor tyrosine kinase related to Src that is frequently found in cell junctions. Die protein is N-myristoylated and palmitoylated and thereby becomes associated with caveolae-like membrane microdomains. Fyn can interact with a variety of other signaling molecules and control a diversity of biological processes such as T cell receptor signaling, regulation of brain function, and adhesion mediated signaling. [Pg.512]


See other pages where Membrane receptors with associated tyrosine kinase is mentioned: [Pg.290]    [Pg.314]    [Pg.272]    [Pg.342]    [Pg.394]    [Pg.571]    [Pg.239]    [Pg.781]    [Pg.147]    [Pg.722]    [Pg.210]    [Pg.166]    [Pg.221]    [Pg.271]    [Pg.279]    [Pg.16]    [Pg.707]    [Pg.844]   


SEARCH



Associated tyrosine kinase

Association with membranes

Membrane receptors

Receptor kinases

Receptor tyrosine kinases

Tyrosine kinases

Tyrosines tyrosine kinase

© 2024 chempedia.info