Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Screw extruders melting

Pinto, G. and Tadmor, Z., Mixing and Residence Time Distribution in Melt Screw Extruders, Polym. Eng. Set, 10, 279 (1970)... [Pg.326]

In the intermittent processes, single or multiple parisons are extruded using a reciprocating screw or ram accumulator. In the former system the screw moves forward to extrude the parisons and then screws back to prepare the charge of molten plastic for the next shot. In the other system the screw extruder supplies a constant output to an accumulator. A ram then pushes melt from the accumulator to produce a parison as required. [Pg.269]

In another case where the twin-screw extruder was used, the rubber and plastic were melt mixed with all ingredients in a similar manner as described in blend compositions for static vulcanizations. The product was then dumped, cooled, and granulated. The premixed granules were then fed into a twin-screw extruder where a very narrow temperature profile was maintained with a relative high compression (2 1), and the screw speed was adjusted depending on the final torque and the flow behavior of the extruded stock. The stock was cured by shear force and temperature enforced by the twin-screw extruder. The dynamically crosslinked blend was taken out in the form of a strip or solid rod to determine the... [Pg.467]

Prior to blending, the LCP was dried at 155°C for 5 h. The melt blending of the materials was carried out with a Berstorff ZE 25 x 33D corotating twin-screw extruder at a melt temperature of 290°C, with a screw speed of 200 rpm, and an output of 6.4 kg/h. The extrudate was immediately quenched in a water bath and repelletized. [Pg.625]

In preliminary tests, melt mixed blends of PP and LCP were processed at six different temperatures (Tcyi 230, 240, 250, 260, 270, and 280°C) with a Brabender Plasti-Corder PLE 651 laboratory single-screw extruder. The measured melt temperatures were about 10°C higher than the cylinder temperatures (Tcyi). The objective was to study the influence of temperature on the size and shape of the dispersed LCP phase. Two different polypropylenes were used to ascertain the effect of the viscosity of the matrix on the final morphology. Different draw ratios were obtained by varying the speed of the take-up machine. [Pg.625]

Figure 2 Optical micrographs of melt mixed PP-LCP blends single-screw extruded at melt temperatures of (a) 250°C, and (b) 260°C. Figure 2 Optical micrographs of melt mixed PP-LCP blends single-screw extruded at melt temperatures of (a) 250°C, and (b) 260°C.
Figure 3 Twin-screw extruded PP-LCP blend processed at a melt temperature of 290°C with low- (left) and high-draw ratio (right). Upper micrographs are taken from the core and lower ones from the skin region. Figure 3 Twin-screw extruded PP-LCP blend processed at a melt temperature of 290°C with low- (left) and high-draw ratio (right). Upper micrographs are taken from the core and lower ones from the skin region.
Blends of polypropylene (PP) and liquid crystalline polymer (LCP) processed without melting the LCP were compared with conventional melt processed blends. In a first stage, PP was blended with 20 wt% of LCP in a twin-screw extruder with the take-up speed varied to achieve blends with different LCP fiber dimensions. In the second stage, these blends were processed both below and above the Tm of the LCP by extrusion and injection molding. [Pg.631]

The materials were dried in a vacuum oven at 115°C for 24 h. They were then melt blended by using a domestic twin-screw extruder ( 35) [screw diameter = 35 mm]. The weight ratios of PES-TLCP were 90 10 and 70 30, respectively [12]. [Pg.688]

Most of the compounds were extrusion compounded in a conical, partially intermeshing, counter rotating twin screw extruder (Haake Reomix TW-lOO). The extruder speed was set at 50 rpm and the barrel temperature profile was set to produce a melt temperature of 260°C at the die. Samples were injection molded in a 31.8 MT Battenfeld press with a 59 cc shot size. Where noted, samples were compounded in a 60 cc Brabender internal mixer and compression molded. [Pg.345]

In an extension of this work, pellets of a blend of PCL and hy-droxypropylcellulose containing fluridone were prepared by grinding, blending, and then melt-spinning the mixture with a Berstorff twin screw extruder (78). The extruded rod was subsequently water-quenched and pelletized. Pellets were also prepared by coating bundles of extruded rods with the water-soluble excipients PEG 3350 and PEG 600 (95 5). In vitro release rate measurements were conducted in the simulant medium of 50% aqueous ethanol or hardened water. [Pg.90]

Twin screw extruders introduce the necessary shear to thoroughly compound the dry blend into a polymer melt. They achieve this by utilizing aggressive mixing and kneading elements on the screw. Unfortunately, processing speeds are limited by the requirement that temperatures must be kept low to prevent excessive degradation. [Pg.352]

Single-screw and double-screw extruders are normally used for polymer melts to accomplish the deaeration or devolatilization of residual volatiles. Devolatilization in an extruder is effected through formation of the venting zone inside the chamber by carefully designed upstream and downstream screw sections. [Pg.576]

PC PC/15% MWNT masterbatch 2 wt.% 105 2-cm Melt mixing in intermeshing co-rotating twin screw extruder... [Pg.200]

Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping. Fig. 1. Process flow sheet for the continuous conversion of latex in a counterrotating, tangential twin-screw extruder as it might be arranged for the production of acrylonitrile-butadiene-styrene polymer (Nichols and Kheradi, 1982). Polystyrene (or styrene-acrylonitrile) melt is fed upstream of the reactor zone where the coagulation reaction takes place. Washing (countercurrent liquid-liquid extraction) and solids separation are conducted in zones immediately downstream of the reactor zone. The remainii zones are reserved for devolatilization and pumping.
All single-screw extruders have several common characteristics, as shown in Figs. 1.1 and 1.2. The main sections of the extruder include the barrel, a screw that fits inside the barrel, a motor-drive system for rotating the screw, and a control system for the barrel heaters and motor speed. Many innovations on the construction of these components have been developed by machine suppliers over the years. A hopper is attached to the barrel at the entrance end of the screw and the resin is either gravity-fed (flood-fed) into the feed section of the screw or metered (starve-fed) through the hopper to the screw flights. The resin can be in either a solid particle form or molten. If the resin feedstock is in the solid form, typically pellets (or powders), the extruder screw must first convey the pellets away from the feed opening, melt the resin, and then pump and pressurize it for a down-... [Pg.2]

The fundamental processes and mechanisms that control single-screw extrusion are presented in Chapters 5 through 8. These processes include solids conveying, melting, polymer fluid flow, and mixing. The analyses presented in these chapters focus on easily utilized functions needed to assess the operation of the single-screw extruder. The derivation of these relationships will be presented in detail in the appendices for those who desire to explore the theory of extrusion in more detail. [Pg.5]

Campbell, G.A., Tang, Z., Wang, C., and Bullwinkel, M., Some New Observations Regarding Melting in Single Screw Extruders, SPE ANTEC Tech. Papers, 49, 213 (2003)... [Pg.23]


See other pages where Screw extruders melting is mentioned: [Pg.143]    [Pg.143]    [Pg.1648]    [Pg.467]    [Pg.624]    [Pg.626]    [Pg.671]    [Pg.57]    [Pg.439]    [Pg.477]    [Pg.306]    [Pg.84]    [Pg.110]    [Pg.182]    [Pg.338]    [Pg.512]    [Pg.390]    [Pg.213]    [Pg.215]    [Pg.234]    [Pg.235]    [Pg.352]    [Pg.91]    [Pg.264]    [Pg.178]    [Pg.534]    [Pg.6]    [Pg.7]    [Pg.12]    [Pg.12]   
See also in sourсe #XX -- [ Pg.533 , Pg.534 , Pg.535 , Pg.536 , Pg.537 , Pg.538 , Pg.539 , Pg.540 , Pg.541 , Pg.542 , Pg.543 , Pg.544 , Pg.553 ]




SEARCH



Degassing Polymer Melts with Co-Rotating Twin Screw Extruders

Melt conveying screw extruders

Melting Zone in a Plasticating Single Screw Extruder

Melting extruder

Melting extruders

Melting in screw extruders

Melting in single screw extruders

Screw extruders

© 2024 chempedia.info