Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketenes mechanisms

Homogeneous catalysts. With a homogeneous catalyst, the reaction proceeds entirely in the vapor or liquid phase. The catalyst may modify the reaction mechanism by participation in the reaction but is regenerated in a subsequent step. The catalyst is then free to promote further reaction. An example of such a homogeneous catalytic reaction is the production of acetic anhydride. In the first stage of the process, acetic acid is pyrolyzed to ketene in the gas phase at TOO C ... [Pg.46]

The mechanism of the reaction probably involves the production of bivalent carbon during the initial loss of nitrogen the group R shifte from an adjacent position to this carbon leading to the production of a keten the latter then reacts with the solvent to give an acid, an amide or an ester. [Pg.904]

Apparatus Ketene generator (500 ml distillation flask) (see Ref. 20, p. 529) for. the preparation of tetramethylallene 1-1 round-bottomed, three-necked flask, provided with a mechanical stirrer, a thermometer and a vent for the addition of dichlorocarbene 500-ml flask (see Fig. 1) for the dechlorination. [Pg.141]

The alkylphenylacetyi chloride 843 and benzoyl chloride undergo decarbo-nylative cross-condensation to give the enone 845 in the presence of EtiNf723]. The reaction is e.xplained by the insertion of the ketene 844 into the Pd-aryl bond and, 3-elimination. To support this mechanism, o, d-unsaturuted ketones are obtained by the reaction of ketenes with aroyl chlorides[724]. [Pg.253]

Lately a third type of transition state has been favored for [2 + 2] cycloadditions forming carbocyclic and heterocyclic four-membered rings. The experimental data on the addition of diarylketenes to arylethylenes are well accommodated by the [ 2s + 2s + 2s] process proposed by Baldwin (70JA4874). The steric effects on the cycloaddition of allenes to ketenes also favor this mechanism (76JA7698). [Pg.39]

The lithium chloride-catalyzed addition of 2-phenylthiirane to diphenylketene may involve attack on carbon by chloride ion followed by addition of the anion of 2-chloro-l-phenylethanethiol to the ketene, but no data about the mechanism were given (69TL259). [Pg.161]

Two extreme mechanisms can be envisaged (Scheme 12), concerted [2 + 2] cycloaddition or the more generally accepted formation of a dipolar intermediate (164) which closes to a /3-lactam or which can interact with a second molecule of ketene to give 2 1 adducts (165) and (166) which are sometimes found as side products. In some cases 2 1 adducts result from reaction of the imine with ketene dimer. [Pg.259]

The interaction of acid chlorides (167 X = Cl) with imines in the presence of bases such as triethylamine may involve prior formation of a ketene followed by cycloaddition to the imine, but in many cases it is considered to involve interaction of the imine with the acid chloride to give an immonium ion (168). This is then cyclized by deprotonation under the influence of the base. Clearly, the distinction between these routes is a rather fine one and the mechanism involved in a particular case may well depend on the reactants and the timing of mixing. Particularly important acid chlorides are azidoacetyl chloride and phthalimidoacetyl chloride, which provide access to /3-lactams with a nitrogen substituent in the 3-position as found in the penicillins and cephalosporins. [Pg.260]

The proposed mechanism for the Conrad-Limpach reaction is shown below. Condensation of an aniline with a 3-keto-ester (i.e., ethyl acetoacetate 5) with loss of water provides enamino-ester 6. Enolization furnishes 10 which undergoes thermal cyclization, analogous to the Gould-Jacobs reaction, via 6n electrocyclization to yield intermediate 11. Compound 11 suffers loss of alcohol followed by tautomerization to give 4-hydroxy-2-methylquinoline 7. An alternative to the proposed formation of 10 is ejection of alcohol from 6 furnishing ketene 13, which then undergoes 671 electrocyclization to provide 12. [Pg.399]

The mechanism of this reaction has not been thoroughly explored. Some work has been done in analysis of potential intermediates for the reaction, although these intermediates were generated using flash vacuum pyrolysis (FVP). Materials in this experiment were trapped and IR spectrum suggested the formation of a ketene prior to cyclization. [Pg.426]

Honk et al. concluded that this FMO model imply increased asynchronicity in the bond-making processes, and if first-order effects (electrostatic interactions) were also considered, a two-step mechanisms, with cationic intermediates become possible in some cases. It was stated that the model proposed here shows that the phenomena generally observed on catalysis can be explained by the concerted mechanism, and allows predictions of the effect of Lewis acid on the rates, regioselectivity, and stereoselectivity of all concerted cycloadditions, including those of ketenes, 1,3-dipoles, and Diels-Alder reactions with inverse electron-demand [2],... [Pg.305]

Safety. Since organic peroxides can be initiated by heat, mechanical shock, friction or contamination, an enormous problem in safety presents itself. Numerous examples of this problem have already been shown in this article. Additional examples include the foilowing methyl and ethyl hydroperoxides expld violently on heating or jarring, and their Ba salts also are extremely expl the alkylidene peroxides derived from low mw aldehydes and ketones are very sensitive and expld with considerable force polymeric peroxides of dimethyl ketene, -K>-0-C(CH3)2C(0)j-n, expld in the dry state by rubbing even at —80° peroxy acids, especially those of low mw, and diacetyl, dimethyl, dipropkmyl and methyl ethyl peroxides, when pure, must be handled only in small amts and... [Pg.680]

The photolysis of o-quinone diazides was carefully investigated by Stis in 1944, many years before the development of photoresists. Scheme 10-102 shows the photolysis sequence for the diazoquinone 10.75 formed in the diazotization of 2-amino-1-naphthol. The product of the photolytic step is a ketocarbene (10.76), which undergoes a Wolff rearrangement to a ketene (10.77). In the presence of water in-dene-3-carboxylic acid (10.78) is formed this compound is highly soluble in water and can be removed in the development step. The mechanism given in Scheme 10-102 was not postulated as such by Stis, because in 1944 ketocarbenes were unknown (for a mechanistic discussion of such Wolff rearrangements see review by Zollinger, 1995, Sec. 8.6, and Andraos et al., 1994). [Pg.284]

Merlic et al. were the first to predict that exposing a dienylcarbene complex 126 to photolysis would lead to an ort/zo-substituted phenolic product 129 [74a]. This photochemical benzannulation reaction, which provides products complementary to the classical para-substituted phenol as benzannulation product, can be applied to (alkoxy- and aminocarbene)pentacarbonyl complexes [74]. A mechanism proposed for this photochemical reaction is shown in Scheme 54. Photo activation promotes CO insertion resulting in the chromium ketene in-... [Pg.150]

The mechanism of the classic ketene-imine reaction to form /J-lactams [17,18] is thought to involve perpendicular attack of the imine nitrogen on the ketene carbonyl carbon from the side of the sterically smaller of the two groups, followed by conrotatory closure of the zwitterionic intermediate (Eq. 6). This... [Pg.163]

In addition to the pathways depicted above, a 4-center concerted mechanism yielding ketenes has been reported during die vacuum pyrolysis of aliphatic polyesters (Scheme 2.4).89,90... [Pg.39]

This mechanism does not apply to unsubstituted or N,N-disubstituted aryl carbamates, which hydrolyze by the normal mechanisms. Carboxylic esters substituted in the a position by an electron-withdrawing group (e.g., CN or COOEt) can also hydrolyze by a similar mechanism involving a ketene intermediate. These elimination-addition mechanisms usually are referred to as ElcB mechanisms, because that is the name given to the elimination portion of the mechanism (p. 1308). [Pg.474]

There is evidence that the reactions can take place by all three mechanisms, depending on the structure of the reactants. A thermal [ 2, + 2s] mechanism is ruled out for most of these substrates by the orbital symmetry rules, but a [ 2s + mechanism is allowed (p. 1072), and there is much evidence that ketenes and certain other linear molecules in which the steric hindrance to such an approach is... [Pg.1079]

The diion mechanism c has been reported for at least some of the reae-tions in categories 3 and as well as some ketene dimerizations. For example, the rate of the reaction between l,2-bis(trifluoromethyl)-l,2-dicyanoe-thene and ethyl vinyl ether was strongly influenced by changes in solvent polarity.Some of these reactions are nonstereospecific, but others are stereo-specific. As previously indicated, it is likely that in the latter cases the di-ionic... [Pg.1080]

The reactions of ketenes with enamines are apparently not concerted but take place by the diionic mechanism Otto, P. Feiler, L.A. Huisgen, R. Angew. Chem. Int. Ed. Engl, 1968. 7, 737. [Pg.1162]

Like the similar cycloaddition of ketenes to alkenes (15-61), most of these reactions probably take place by the di-ionic mechanism c (p. 1078). P-Lactams have also been prepared in the opposite manner by the addition of enamines to isocyanates ... [Pg.1250]

The actual product of the reaction is thus the ketene, which then reacts with water (15-3), an alcohol (15-5), or ammonia or an amine (15-8). Particularly stable ketenes (e.g., Ph2C=C=0) have been isolated and others have been trapped in other ways (e.g., as P-lactams, 16-64). The purpose of the catalyst is not well understood, though many suggestions have been made. This mechanism is strictly analogous to that of the Curtius rearrangement (18-14). Although the mechanism as shown above involves a free carbene and there is much evidence to support this, it is also possible that at least in some cases the two steps are concerted and a free carbene is absent. [Pg.1406]

Even though poly(ortho esters) contain hydrolytically labile Linkages, they are highly hydrophobic materiads and for this reason are very stable and can be stored without careful exclusion of moisture. However, the ortho ester linkage in the polymer is inherently thermally unstable and at elevated temperatures is believed to dissociate into an alcohol and a ketene acetal (33). A possible mechanism for the thermal degradation is shown below. This thermal degradation is similar to that observed with polyurethanes (34). [Pg.150]

In a related reaction, enolate 71 is undergoing an electrophilic chlorination with 2,2,6,6-tetrachloro-cyclohexanone (74, Fig. 39), eventually leading to a-chlorinated enol esters 75 [91]. However, a different mechanism cannot be completely ruled out, where the catalyst is not acylated by the ketene, but chlorinated by the tetrachloro-ketone to form [64c-Cl] as the reactive species. [Pg.165]

The anhydride (72) gives quite different products, (73) and (74), with tris(dimethylamino)phosphine to those previously obtained with triethyl phosphite. The formation of (73) and (74) is suggested to involve keten intermediates and an alternative mechanism is proposed for the phosphite reaction. [Pg.82]


See other pages where Ketenes mechanisms is mentioned: [Pg.198]    [Pg.198]    [Pg.37]    [Pg.261]    [Pg.261]    [Pg.304]    [Pg.850]    [Pg.302]    [Pg.98]    [Pg.298]    [Pg.468]    [Pg.788]    [Pg.1042]    [Pg.1079]    [Pg.1079]    [Pg.1102]    [Pg.1161]    [Pg.1282]    [Pg.46]    [Pg.194]    [Pg.343]    [Pg.166]   
See also in sourсe #XX -- [ Pg.1050 ]




SEARCH



Ketene acetals mechanism

Ketene intermediate mechanism

Ketene-carbene mechanism, rearrangements

Mechanisms ketene-imine cycloaddition

Oxygen ketene mechanism

© 2024 chempedia.info