Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reaction Mechanisms and Rate

Figure 2. Mechanism and reaction rates for the epoxy - amine cure. Figure 2. Mechanism and reaction rates for the epoxy - amine cure.
Thus far we have explored the field of classical thermodynamics. As mentioned previously, this field describes large systems consisting of billions of molecules. The understanding that we gain from thermodynamics allows us to predict whether or not a reaction will occur, the amount of heat that will be generated, the equilibrium position of the reaction, and ways to drive a reaction to produce higher yields. This otherwise powerful tool does not allow us to accurately describe events at a molecular scale. It is at the molecular scale that we can explore mechanisms and reaction rates. Events at the molecular scale are defined by what occurs at the atomic and subatomic scale. What we need is a way to connect these different scales into a cohesive picture so that we can describe everything about a system. The field that connects the atomic and molecular descriptions of matter with thermodynamics is known as statistical thermodynamics. [Pg.77]

While Table C8 includes reactions for the formation of thermal NO, it does not include those for prompt NO. Mechanisms and reaction rate data for prompt NO formation and various methods for the reduction of NO have been described by Miller and Bowman [Prog. Energy Combust. Sci. 15, 287(1989)]. [Pg.689]

The combined use of the modem tools of surface science should allow one to understand many fundamental questions in catalysis, at least for metals. These tools afford the experimentalist with an abundance of information on surface structure, surface composition, surface electronic structure, reaction mechanism, and reaction rate parameters for elementary steps. In combination they yield direct information on the effects of surface structure and composition on heterogeneous reactivity or, more accurately, surface reactivity. Consequently, the origin of well-known effects in catalysis such as structure sensitivity, selective poisoning, ligand and ensemble effects in alloy catalysis, catalytic promotion, chemical specificity, volcano effects, to name just a few, should be subject to study via surface science. In addition, mechanistic and kinetic studies can yield information helpful in unraveling results obtained in flow reactors under greatly different operating conditions. [Pg.2]

Quantum chemistry provides data that improves understanding of chemical kinetics. The data is further used as input for parameterizing transport and deposition models or chemical reaction schemes in models of various other atmospheric processes. As documented in many of the articles in this special edition, theoretical techniques are tested through comparison to laboratory measurements and atmospheric observations, and then further applied towards predicting mechanisms and reaction rates which are currently unknown. [Pg.6]

Even though it is difficult to predict reaction rates in marine systems, the concepts of molecular diffusion and mechanisms of reaction underpin much of geochemical research at the air-water and sea floor-ocean boundaries. A basic knowledge of molecular diffusion and chemical kinetics is essential for understanding the processes that control these fluxes. This chapter explores the topics of molecular diffusion, reaction rate mechanisms and reaction rate catalysis. Catalysis is presented in a separate section because nearly all chemical reactions in nature with characteristic life times of more than a few minutes are catal5 ed. [Pg.304]

Frequently the work involved conjugated molecules to which Electronic population analysis was usually added to the energy calculations and a theoretical dipole moment was obtained that could be compared with the experimental data. With the advent of NMR. and ESR. spectroscopy other observables became available, and theory was successfully applied to the interpretation of these spectra. However, very little was done in the field of real chemistry, that is, in the study of reaction mechanisms and reaction rates. Over the last decade the availability of large electronic computers, the introduction of approximate but reliable quantum mechanical methods which include all the electrons, or at least all valence electrons in a molecular system and the discovery of the rules of orbital symmetry have led to a significant change of the situation. [Pg.2]

Henry Eyring s courses in statistical mechanics and reaction rate theory opened a new world to me when I took them in 1947-48 while a graduate student in physiology. My most vivid memories of these courses are the clarity of his lectures, his enthusiasm for his subject, and the insight he imparted into the behavior of matter at the molecular level. The brilliance of his lectures was emphasized when Henry was out of town and his post-doctoral students had to substitute for him they suffered in the inevitable comparison. [Pg.602]

The introduction of the notion of steps into the discussion of chemical reaction lead to the development of the Mechanism Model. The first ideas about the relationship between mechanism and reaction rate were established here. These ideas enabled discussion about the action of catalysts to take place and for the development of more elaborate quantitative expressions for reaction rates. [Pg.295]

The kinetic submechanism for the inhibition studies was also developed by a sequential process, beginning with HBr (12) and the other halogen acids HCl and HI, followed by reactions involving methyl, vinyl, and ethyl halides (13) and CF3Br (14). The inhibition mechanism and reaction rates are given in Reference (13). [Pg.177]

Wei et al. [98-101] investigated the transesterification mechanism and reaction rate in blends of PC and an LCP (PHB/PET60/40). More recently, Guo [109-111] suggested experimentally that transesterification was a result of the compatibility, instead of a prerequisite of compatibility, e.g., transesterification was determined by the initial compatibility of polymer blends. This is an academic argument, but the presence of transesterification at least favors the compatibilization in in situ composites. Further investigation of the transester-iflcation in LCP blends is needed in the coming years. [Pg.206]

The book is designed to help the reader, particularly students, researchers, research scholars, scientists, chemists and industry fraternity of chemistry and allied fields understand the mechanics and reactions rates. The selection of topics addressed and the examples, tables and graphs used to illustrate them are governed, to a large extent, by the fact that this book is aimed primarily at chemistry and allied science and engineering technologist. [Pg.353]

In addition to their obvious commercial potential, continuous reactors can be excellent tools for the study of fundamental kinetic mechanisms and reaction rates. This later factor is especially important for the study of mechanisms controlling the competitive growth of latex particles. [Pg.137]

The morphology of the coating and the deposition rate are controlled by the reaction mechanism and reaction rate. Readily polymerizing systems... [Pg.418]

Micelles are prevalent in naturally occurring and biological catalytic reactions. However, it is only in recent decades that scientists have developed kinetic models clarifying how micelle-mediated catalysis works at a molecular level. Written by a leading expert in the field, Micellar Catalysis is an in-depth examination of how micelles affect reaction mechanisms and reaction rates in organic and inorganic reactions. [Pg.483]

The microscopic understanding of tire chemical reactivity of surfaces is of fundamental interest in chemical physics and important for heterogeneous catalysis. Cluster science provides a new approach for tire study of tire microscopic mechanisms of surface chemical reactivity [48]. Surfaces of small clusters possess a very rich variation of chemisoriDtion sites and are ideal models for bulk surfaces. Chemical reactivity of many transition-metal clusters has been investigated [49]. Transition-metal clusters are produced using laser vaporization, and tire chemical reactivity studies are carried out typically in a flow tube reactor in which tire clusters interact witli a reactant gas at a given temperature and pressure for a fixed period of time. Reaction products are measured at various pressures or temperatures and reaction rates are derived. It has been found tliat tire reactivity of small transition-metal clusters witli simple molecules such as H2 and NH can vary dramatically witli cluster size and stmcture [48, 49, M and 52]. [Pg.2393]

According to this mechanism, the reaction rate is proportional to the concentration of hydronium ion and is independent of the associated anion, ie, rate = / [CH3Hg][H3 0 ]. However, the acid anion may play a marked role in hydration rate, eg, phosphomolybdate and phosphotungstate anions exhibit hydration rates two or three times that of sulfate or phosphate (78). Association of the polyacid anion with the propyl carbonium ion is suggested. Protonation of propylene occurs more readily than that of ethylene as a result of the formation of a more stable secondary carbonium ion. Thus higher conversions are achieved in propylene hydration. [Pg.110]

In all cases, water and carbonic acid, the latter of which is the source of protons, are the main reactants. The net result of the reaction is the release of cations (Ca " ), Mg ", K", Na" ) and the production of alkalinity via HCO. When ferrous iron is present in the lattice, as in biotite, oxygen consumption may become an important factor affecting the weathering mechanism and the rate of dissolution. [Pg.214]

Hence, it is important to remember that the products, reaction mechanism and the rate of the process may depend on the history and pretreatment of the electrode and that, indeed, the activity of the electrode may change during the timescale of a preparative electrolysis. Certainly, the mechanism and products may depend on the solution conditions and the electrode potential, purely because of the effect of these parameters on the state of the electrode surface. [Pg.192]

The above results show that the reactions of all organocobalt(III) complexes with Hg(II) ions so far reported share several features in common. The reaction proceeds by an Se2 mechanism and the rate is reduced [compared to that of the simple aquated Hg(II) ion with the methyl complex] by (1) complexing of the Hg(II), e.g., with chloride, (2) increased substitution on the a-carbon, and (3) reduced electron donation from the cis and/or trans ligands. [Pg.423]

The relationship between a mechanism and its rate law can be illustrated for the decomposition of NO2. Experiments that we describe in Section 15-1 reveal that the rate of this reaction is proportional to the square of NO2 concentration but is independent of the concentration of O2 ... [Pg.1062]

Table 10.4 lists the rate parameters for the elementary steps of the CO + NO reaction in the limit of zero coverage. Parameters such as those listed in Tab. 10.4 form the highly desirable input for modeling overall reaction mechanisms. In addition, elementary rate parameters can be compared to calculations on the basis of the theories outlined in Chapters 3 and 6. In this way the kinetic parameters of elementary reaction steps provide, through spectroscopy and computational chemistry, a link between the intramolecular properties of adsorbed reactants and their reactivity Statistical thermodynamics furnishes the theoretical framework to describe how equilibrium constants and reaction rate constants depend on the partition functions of vibration and rotation. Thus, spectroscopy studies of adsorbed reactants and intermediates provide the input for computing equilibrium constants, while calculations on the transition states of reaction pathways, starting from structurally, electronically and vibrationally well-characterized ground states, enable the prediction of kinetic parameters. [Pg.389]

No systematic studies of a number of compoimds have yet appeared to discover correlations suggestive of mechanism. This paper presents the fractional conversions and reaction rates measured under reference conditions (50 mg contaminants/m ) in air at 7% relative humidity (1000 mg/m H2O), for 18 compounds including representatives of the important contaminant classes of alcohols, ethers, alkanes, chloroethenes, chloroalkanes, and aromatics. Plots of these conversions and rates vs. hydroxyl radical and chlorine radical rate constants, vs. the reactant coverage (dark conditions), and vs. the product of rate constant times coverage are constructed to discern which of the proposed mechanistic suggestions appear dominant. [Pg.435]

While in presence of catalyst the reaction is assumed to LHHW type of mechanism and its rate expression is given by ... [Pg.376]

The reactions of the bare sodium ion with all neutrals were determined to proceed via a three-body association mechanism and the rate constants measured cover a large range from a slow association reaction with NH3 to a near-collision rate with CH3OC2H4OCH3 (DMOE). The lifetimes of the intermediate complexes obtained using parameterized trajectory results and the experimental rates compare fairly well with predictions based on RRKM theory. The calculations also accounted for the large isotope effect observed for the more rapid clustering of ND3 than NH3 to Na+. [Pg.223]

The polymerization kinetics have been intensively discussed for the living radical polymerization of St with the nitroxides,but some confusion on the interpretation and understanding of the reaction mechanism and the rate analysis were present [223,225-229]. Recently, Fukuda et al. [230-232] provided a clear answer to the questions of kinetic analysis during the polymerization of St with the poly(St)-TEMPO adduct (Mn=2.5X 103,MW/Mn=1.13) at 125 °C. They determined the TEMPO concentration during the polymerization and estimated the equilibrium constant of the dissociation of the dormant chain end to the radicals. The adduct P-N is in equilibrium to the propagating radical P and the nitroxyl radical N (Eqs. 60 and 61), and their concentrations are represented by Eqs. (62) and (63) in the derivative form. With the steady-state equations with regard to P and N , Eqs. (64) and (65) are introduced, respectively ... [Pg.116]

This chapter provides an introduction to several types of homogeneous (single-phase) reaction mechanisms and the rate laws which result from them. The concept of a reaction mechanism as a sequence of elementary processes involving both analytically detectable species (normal reactants and products) and transient reactive intermediates is introduced in Section 6.1.2. In constructing the rate laws, we use the fact that the elementary steps which make up the mechanism have individual rate laws predicted by the simple theories discussed in Chapter 6. The resulting rate law for an overall reaction often differs significantly from the type discussed in Chapters 3 and 4. [Pg.154]

This experiment studies the kinetics or reaction mechanisms, and their rates, when iodine is added to acetone ... [Pg.296]


See other pages where Reaction Mechanisms and Rate is mentioned: [Pg.509]    [Pg.258]    [Pg.374]    [Pg.761]    [Pg.538]    [Pg.390]    [Pg.4]    [Pg.509]    [Pg.258]    [Pg.374]    [Pg.761]    [Pg.538]    [Pg.390]    [Pg.4]    [Pg.114]    [Pg.443]    [Pg.925]    [Pg.10]    [Pg.59]    [Pg.114]    [Pg.407]    [Pg.3]    [Pg.174]    [Pg.121]   
See also in sourсe #XX -- [ Pg.258 , Pg.259 ]




SEARCH



Kinetics Rates and Mechanisms of Chemical Reactions

Mechanisms of solvolytic reactions, medium effects on the rates and

Proton-transfer reactions rates and mechanisms

Rate Expressions and Reaction Mechanisms

Rate law reaction mechanism and

Rate mechanism

Rates and mechanisms of solvolytic reactions, medium effects

Reaction Mechanisms and the Rate-Law Expression

Reaction Rates and Mechanisms of Organic Pollutant Reactions

Solvolytic reactions, medium effects on the rates and mechanisms

Systematic Determination of Reaction Mechanism and Rate Coefficients

© 2024 chempedia.info