Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanism acyl addition reactions

Both in the laboratory and in living organisms, the reactions of carbonyl compounds take place by one of four general mechanisms nucleophilic addition, nucleophilic acyl substitution, alpha substitution, and carbonyl condensation. These... [Pg.688]

We said in Section 17.4 that carboxylic acids are reduced by L1AIH4 to give primary alcohols, but we deferred a discussion of the reaction mechanism at that time. In fact, the reduction is a nucleophilic acyl substitution reaction in which —H replaces -OH to give an aldehyde, which is further reduced to a primary alcohol by nucleophilic addition. The aldehyde intermediate is much more reactive than the starting acid, so it reacts immediately and is not isolated. [Pg.799]

The following transformation involves a conjugate nucleophilic addition reaction (Section 19.13) followed by an intramolecular nucleophilic acyl substitution reaction (Section 21.2). Show the mechanism. [Pg.969]

A few further general examples of zinc catalytic activity or reactivity include the following. Other zinc-containing systems include a zinc phenoxide/nickel(0) catalytic system that can be used to carry out the chemo- and regioselective cyclotrimerization of monoynes.934 Zinc homoenolates have been used as novel nucleophiles in acylation and addition reactions and shown to have general utility.935,936 Iron/zinc species have been used in the oxidation of hydrocarbons, and the selectivity and conditions examined.362 There are implications for the mechanism of metal-catalyzed iodosylbenzene reactions with olefins from the observation that zinc triflate and a dizinc complex catalyze these reactions.937... [Pg.1231]

There are of course borderline cases when the reacting hydrocarbon is acidic (as in the case of 1-alkynes) a direct attack of the proton at the carbanion can be envisaged. It has been proposed that acyl metal complexes of the late transition metals may also react with dihydrogen according to a o-bond metathesis mechanism. However, for the late elements an alternative exists in the form of an oxidative addition reaction. This alternative does not exist for d° complexes such as Sc(III), Ti(IV), Ta(V), W(VI) etc. and in such cases o-bond metathesis is the most plausible mechanism. [Pg.48]

The versatility of 5-nitrosopyrimidines in pteridine syntheses was noticed by Pachter (64MI21603) during modification of the Timmis condensation between (262) and benzyl methyl ketone simple condensation leads to 4-amino-7-methyl-2,6-diphenylpteridine (264) but in the presence of cyanide ion 4,7-diamino-2,6-diphenylpteridine (265) is formed (equation 90). The mechanism of this reaction is still uncertain (63JOC1187) it may involve an oxidation of an intermediate hydroxylamine derivative, nitrone formation similar to the Krohnke reaction, or nucleophilic addition of the cyanide ion to the Schiff s base function (266) followed by cyclization to a 7-amino-5,6-dihydropteridine derivative (267), oxidation to a quinonoid-type product (268) and loss of the acyl group (equation 91). Extension of these principles to a-aryl- and a-alkyl-acetoacetonitriles omits the oxidation step and gives higher yields, and forms 6-alkyl-7-aminopteridines, which cannot be obtained directly from simple aliphatic ketones. [Pg.314]

A new reaction of iV-acyl thiazolidinethione enolates with enolizable aldoxime ethers has been reported to give 2-(thiazolidine-2-thione)-l-azetines 608 with excellent diastereoselectivity (Equation 235) <2003JA3690>. The absence of either a methoxy or a carbonyl group in the 1-azetines indicated a complex mechanism rather than a simple addition reaction. The formation of azetines has been rationalized by combination of the oxime and TiCh to give a highly electrophilic trichlorotitanium iminium intermediate 609, which adds onto enolate 610 to form intermediate 611, which cyclizes to azetidines 612 (Scheme 81). An irreversible elimination of bis-trichlorotitanium oxide provides the ultimate driving force to produce azetines. [Pg.93]

Shi and coworkers found that vinyl acetates 68 are viable acceptors in addition reactions of alkylarenes 67 catalyzed by 10 mol% FeCl2 in the presence of di-tert-butyl peroxide (Fig. 15) [124]. (S-Branched ketones 69 were isolated in 13-94% yield. The reaction proceeded with best yields when the vinyl acetate 68 was more electron deficient, but both donor- and acceptor-substituted 1-arylvinyl acetates underwent the addition reaction. These reactivity patterns and the observation of dibenzyls as side products support a radical mechanism, which starts with a Fenton process as described in Fig. 14. Hydrogen abstraction from 67 forms a benzylic radical, which stabilizes by addition to 68. SET oxidation of the resulting electron-rich a-acyloxy radical by the oxidized iron species leads to reduced iron catalyst and a carbocation, which stabilizes to 69 by acyl transfer to ferf-butanol. However, a second SET oxidation of the benzylic radical to a benzylic cation prior to addition followed by a polar addition to 68 cannot be excluded completely for the most electron-rich substrates. [Pg.214]

For the first time, inverse substrates provide a general method for the specific introduction of an acyl group into the trypsin active site without recourse to cation-containing acyl compounds. The preparation of various new acyl enzymes is expected to lead to the discovery of novel features of the enzymatic reaction mechanism. In addition, any desired reporter groups might be specifically introduced into the trypsin... [Pg.99]

Nucleophilic acyl substitutions are also called acyl transfer reactions because they transfer the acyl group from the leaving group to the attacking nucleophile. The following is a generalized addition-elimination mechanism for nucleophilic acyl substitution under basic conditions. [Pg.997]

The mechanism for this reaction has the usual two steps of the general mechanism for nucleophilic acyl substitution presented in Section 22.7—addition of the nucleophile followed by loss of a leaving group—plus an additional step involving proton transfer (Mechanism 22.9). [Pg.853]


See other pages where Mechanism acyl addition reactions is mentioned: [Pg.855]    [Pg.862]    [Pg.1130]    [Pg.1354]    [Pg.314]    [Pg.90]    [Pg.85]    [Pg.172]    [Pg.26]    [Pg.208]    [Pg.255]    [Pg.251]    [Pg.90]    [Pg.7]    [Pg.7]    [Pg.92]    [Pg.90]    [Pg.527]    [Pg.190]    [Pg.581]    [Pg.42]    [Pg.427]    [Pg.1004]    [Pg.123]    [Pg.215]    [Pg.251]    [Pg.35]    [Pg.382]    [Pg.697]    [Pg.152]    [Pg.528]    [Pg.270]   


SEARCH



Acyl addition

Acylation 2+2] Addition

Acylation mechanism

Addition reactions mechanism

Additive mechanism

Mechanisms addition

© 2024 chempedia.info