Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cyclic mechanical loading

The use of fatigue data and crack length measurements to predict the remaining service life of a stmcture under cyclic loading is possibly the most common application of fracture mechanics for performance prediction. In complex stmctures the growth of cracks is routinely monitored at intervals, and from data about crack growth rates and the applied loadings at that point in the stmcture, a decision is made about whether the stmcmre can continue to operate safely until the next scheduled inspection. [Pg.549]

Material Properties. Materials possess various mechanical and chemical properties, and, therefore, it is possible to select materials appropriate for severe corrosion conditions. For example, if the equipment is under cyclic loading, a material with high fatigue strength is desired. Similarly, it is desirable to have corrosion-resistant materials for the corrosive environments. There are several sources for obtaining information on materials properties. Some are listed in Table 4-173. [Pg.1323]

In addition, it should exhibit a fairly high hysteresis level that would have the effect of dissipating the sharp mechanical impulse loads as heat. The material will develop heat due to the stress under cyclical load. Materials used are the elastomeric plastics used in the products or as a coating on products. [Pg.97]

In conclusion, it may be mentioned that the characterization of the mechanical behaviour of materials has many facets. Different methods of testing pertain to different aspects and conditions. The tensile properties, as determined by the tensile test, correspond to slowly applied single load applications. Rapidly applied and cyclic load applications respectively provide the impact and the fatigue properties. Hardness is an analog of the tensile strength which a tensile test measures. The creep test pertains to mechanical behaviour under long term loading at elevated temperatures. [Pg.31]

Polymers have some specific properties due to their organic nature. Thermoplastics, as seen in Chapter 1, are independent organic macromolecules with some sensitivity to environmental parameters temperature, moisture, deleterious solids, liquids, gases and other chemical products. They are also sensitive to mechanical loading, especially cyclic loads. Their specific properties, such as electrical or optical properties, are also important for their applications. [Pg.156]

Stiffness, resistance to deformation under constant applied load (creep resistance), resistance to damage by cyclical loading (fatigue resistance), and excellent lubricity are mechanical properties for which acetal resins are perhaps best known and which have contributed significantly to their excellent commercial success. General-purpose acetal resins are substantially stiffer than general-purpose polyamides (nylon-6 or -6,6 types) when the latter have reached equilibrium water content. [Pg.8]

Failure may be mechanical, due to wear, abrasion and erosion, britle fracture, surface deterioration, cyclic loading, embrittlement, thermal or pressure shock, or fatigue. Failure may also be chemical, in essence due to corrosion. [Pg.90]

Determination of residual stress of a failed component is one of the most important steps in failure analysis. The determination of residual stress is useful when failed components experience stress concentration, overload, distortion or the formation of cracks in the absence of applied loads, subjected to corrosive environments as in stress corrosion, mechanical or thermal fatigue due to cyclic loading, or when faults in processing such as shot peening, grinding, milling and improper heat treatment such as stress relief, induction hardening, thermal strains, exposure temperature are involved. [Pg.161]

Stresses. The main mechanical properties to consider are maximum stress or stress intensity factor, <7m ix or Kmax, cyclic stress or stress-intensity range, Act or AK, stress ratio R, cyclic loading frequency, cyclic load waveform (constant-amplitude loading), load interactions in variable-amplitude loading, state of stress, residual stress, and crack size and shape, and their relation to component size geometry.31... [Pg.412]

The initial intent of this review is to address the mechanisms of stress redistribution upon monotonic and cyclic loading, as well as the mechanics needed to characterize the notch sensitivity.5 13 This assessment is conducted primarily for composites with 2-D reinforcements. The basic phenomena that give rise to inelastic strains are matrix cracks and fiber failures subject to interfaces that debond and slide (Fig. 1.1).14-16 These phenomena identify the essential constituent properties, which have the typical values indicated in Table 1.1. [Pg.11]

Early work (e.g., Refs. 44 and 45) on silicon nitride ceramics for a limited range of high temperature cyclic loading conditions led to the hypothesis that the mechanisms of cyclic and static fracture at elevated temperature are identical, and that the cyclic crack growth rates can be predicted on the basis of static fracture data. One of the techniques commonly used to derive cyclic crack growth rates solely on the basis of static load fracture data involves integration of the relationship in Eqn. (13) over the duration of the fatigue cycle such that... [Pg.236]


See other pages where Cyclic mechanical loading is mentioned: [Pg.244]    [Pg.1379]    [Pg.150]    [Pg.184]    [Pg.244]    [Pg.1379]    [Pg.150]    [Pg.184]    [Pg.547]    [Pg.1189]    [Pg.82]    [Pg.85]    [Pg.87]    [Pg.221]    [Pg.279]    [Pg.228]    [Pg.674]    [Pg.674]    [Pg.74]    [Pg.75]    [Pg.181]    [Pg.82]    [Pg.415]    [Pg.221]    [Pg.283]    [Pg.346]    [Pg.152]    [Pg.100]    [Pg.112]    [Pg.112]    [Pg.89]    [Pg.239]    [Pg.244]    [Pg.269]    [Pg.419]    [Pg.677]    [Pg.189]    [Pg.206]    [Pg.216]    [Pg.220]    [Pg.227]    [Pg.228]    [Pg.234]    [Pg.237]   
See also in sourсe #XX -- [ Pg.542 ]




SEARCH



Cyclic load

Cyclic mechanism

Cyclical loading

Mechanical load

Mechanical loading

© 2024 chempedia.info