Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Measurement science sensitivity

As a measuring science, analytical chemistry has to guarantee the quality of its results. Each kind of measurement is objectively affected by uncertainties which can be composed of random scattering and systematic deviations. Therefore, the measured results have to be characterized with regard to their quality, namely both the precision and accuracy and - if relevant - their information content (see Sect. 9.1). Also analytical procedures need characteristics that express their potential power regarding precision, accuracy, sensitivity, selectivity, specificity, robustness, and detection limit. [Pg.202]

Electrons are extremely usefiil as surface probes because the distances that they travel within a solid before scattering are rather short. This implies that any electrons that are created deep within a sample do not escape into vacuum. Any technique that relies on measurements of low-energy electrons emitted from a solid therefore provides infonuation from just the outenuost few atomic layers. Because of this inlierent surface sensitivity, the various electron spectroscopies are probably the most usefid and popular teclmiques in surface science. [Pg.305]

The ability to make optical measurements on individual molecules and submicroscopic aggregates, one at a time, is a valuable new tool in several areas of molecular science. By eliminating inlromogeneous broadening it allows pure spectroscopy to be perfonned witli unprecedented precision in certain condensed phase systems. As an analytical method it pennits tire rapid detection of certain analytes witli unmatched sensitivity. Finally, it is revolutionizing our... [Pg.2503]

However, I believe that enough has been described to support my contention that modern methods of characterisation are absolutely central to materials science in its modern incarnation following the quantitative revolution of mid-century. That revolution owed everything to the availability of sensitive and precise techniques of measurement and characterisation. [Pg.246]

Today, bioluminescence reactions are used as indispensable analytical tools in various fields of science and technology. For example, the firefly bioluminescence system is universally used as a method of measuring ATP (adenosine triphosphate), a vital substance in living cells Ca2+-sensitive photoproteins, such as aequorin from a jellyfish, are widely utilized in monitoring the intracellular Ca2+ that regulates various important biological processes and certain analogues... [Pg.485]

Independent arrays of telescopes have been discussed for decades but have generally not been successful, except for radio telescopes, where interferometry is a key virtue, aided by the fact that the individual telescope signals can be amplihed and combined while preserving phase information. This is not practical in the optical, thus there are significant inefficiencies in sensitivity by coherently combining the light from an array of optical telescopes. Instrumentation for an array of telescopes has also been a cause of difficulty. Perhaps the best known successful array has been the VLT with four 8-m telescopes, each with its own suite of science instruments, and the capacity to combine all telescopes together for Interferometric measurements. [Pg.66]

Inertial sensors are useful devices in both science and industry. Higher precision sensors could find practical scientific applications in the areas of general relativity (Chow et ah, 1985), geodesy and geology. Important applications of such devices occur also in the field of navigation, surveying and analysis of earth structures. Matter-wave interferometry has recently shown its potential to be an extremely sensitive probe for inertial forces (Clauser, 1988). First, neutron interferometers have been used to measure the Earth rotation (Colella et ah, 1975) and the acceleration due to gravity (Werner et ah, 1979) in the end of the seventies. In 1991, atom interference techniques have been used in... [Pg.359]

The intensity of the absorption of microwave energy is a measure the abundance of that isotope. The potency of the NMR spectroscopy is not only its ability to quantify the concentration of an isotope, but to check the enviromnent into which an isotope is embedded. This is possible because the magnetic resonance and thus the absorption frequency prove to be sensitive to the spins of neighboring atoms and to structural features of the probe. Therefore, NMR spectroscopy is more a tool for scientific structural analyses than for daily food (colorant) inspection. For a detailed study of the NMR techniques used in food science we recommend books by Macomber and Pochapsky. - ... [Pg.9]

In surface science, work function measurements are considered to be rather sensitive towards changes of the sample surface. Work function measurements are used to follow adsorption processes and to determine the dipole established at the surface. During oxygen adsorption and oxide formation the sign of the work function change allows one to distinguish between oxygen atom adsorbed on the surface or sub-surface [30]. [Pg.87]

The fast, sensitive, reliable, and reproducible detection of (bio)molecules including quantification as well as biomolecule localization, the measurement of their interplay with one another or with other species, and the assessment of biomolecule function in bioassays as well as in vitro and in vivo plays an ever increasing role in the life sciences. The vast majority of applications exploit extrinsic fluorophores like organic dyes, fluorescent proteins, and also increasingly QDs, as the number of bright intrinsic fluorophores emitting in the visible and NIR is limited. In the near future, the use of fluorophore-doped nanoparticles is also expected to constantly increase, with their applicability in vivo being closely linked to the intensively discussed issue of size-related nanotoxicity [88]. [Pg.21]


See other pages where Measurement science sensitivity is mentioned: [Pg.64]    [Pg.15]    [Pg.23]    [Pg.50]    [Pg.336]    [Pg.137]    [Pg.8]    [Pg.83]    [Pg.418]    [Pg.2]    [Pg.357]    [Pg.503]    [Pg.291]    [Pg.265]    [Pg.1]    [Pg.208]    [Pg.211]    [Pg.4]    [Pg.25]    [Pg.225]    [Pg.44]    [Pg.270]    [Pg.379]    [Pg.63]    [Pg.69]    [Pg.508]    [Pg.28]    [Pg.279]    [Pg.16]    [Pg.66]    [Pg.160]    [Pg.200]    [Pg.289]    [Pg.216]    [Pg.372]    [Pg.295]    [Pg.90]    [Pg.170]    [Pg.154]   
See also in sourсe #XX -- [ Pg.63 ]




SEARCH



Measurement science

Sensitivity measurements

Sensitivity measuring

© 2024 chempedia.info