Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Matrix types, column

In an ideal SEC separation, the mechanism is purely sieving, with no chemical interaction between the column matrix and the sample molecules. In practice, however, a small number of weakly charged groups on the surface of all TSK-GEL PW type packings can cause changes in elution order from that of an ideal system. Fortunately, the eluent composition can be varied greatly with TSK-GEL PW columns to be compatible with a wide range of neutral, polar, anionic, and cationic samples. Table 4.8 lists appropriate eluents for GFC of all polymer types on TSK-GEL PW type columns (11). [Pg.111]

In the development of a SE-HPLC method the variables that may be manipulated and optimized are the column (matrix type, particle and pore size, and physical dimension), buffer system (type and ionic strength), pH, and solubility additives (e.g., organic solvents, detergents). Once a column and mobile phase system have been selected the system parameters of protein load (amount of material and volume) and flow rate should also be optimized. A beneficial approach to the development of a SE-HPLC method is to optimize the multiple variables by the use of statistical experimental design. Also, information about the physical and chemical properties such as pH or ionic strength, solubility, and especially conditions that promote aggregation can be applied to the development of a SE-HPLC assay. Typical problems encountered during the development of a SE-HPLC assay are protein insolubility and column stationary phase... [Pg.534]

There are many combinations of separations techniques and methods of coupling these techniques currently employed in MDLC systems. Giddings (1984) has discussed a number of the possible combinations of techniques that can be coupled to form two-dimensional systems in matrix form. This matrix includes column chromatography, field-flow fractionation (FFF), various types of electrophoresis experiments, and more. However, many of these matrix elements would be difficult if not impossible to reduce to practice. [Pg.106]

Since the number of operations required to invert or to find the LU factorization of the jacobian matrix requires n3 or n2 operations, respectively, it is fortunate that most absorber-type problems are characterized by mixtures which contain a relatively large number of components and by columns which contain a relatively small number of plates. For problems of this type, the 2N Newton-Raphson method is best suited and is recommended. For separations carried out in distillation type columns involving large numbers of components and plates, the 0 method is the most efficient and is recommended. [Pg.172]

EPA Method Reference Analyte Type Sample Matrix Common Sample Preparation Detector Types Column Suggested... [Pg.180]

A set of rules determines how to set up a Z-matrix properly, Each line in the Z-matiix represents one atom of the molecule. In the first line, atom 1 is defined as Cl, which is a carbon atom and lies at the origin of the coordinate system. The second atom, C2, is at a distance of 1.5 A (second column) from atom 1 (third column) and should always be placed on one of the main axes (the x-axis in Figure 2-92). The third atom, the chlorine atom C13, has to lie in the xy-planc it is at a distanc e of 1.7 A from atom 1, and the angle a between the atoms 3-1-2 is 109 (fourth and fifth columns). The third type of internal coordinate, the torsion angle or dihedral r, is introduced in the fourth line of the Z-matiix in the sixth and seventh column. It is the angle between the planes which arc... [Pg.93]

We shall often encotmter square matrices, which have the same number of rows and columns. A diagonal matrix is a square matrix in which all the elements are zero except for those on the diagonal. The unit or identity matrix I is a special type of diagonal matrix in which all the non-zero elements are 1 thus the 3x3 unit matrix is ... [Pg.33]

More recent versions of this type of probe include some refinements, such as the provision of a wick to aid evaporation of the solvent and matrix from the probe tip (Figure 13.5). Such improvements have allowed greater flow rates to be used, and rates of 1 to 10 ml/min are possible. For these sorts of low flow rates, minibore LC columns must be employed. [Pg.85]

The rows represent the type of measurement (e.g., compositions, flows, temperatures, and pressures). The columns represent streams, times, or space position in the unit. For example, compositions, total flows, temperatures, and pressures would be the rows. Streams I, 2, and 3 would be columns of the matrix of measurements. Repeated measurements would be added as additional columns. [Pg.2559]

Because the various types of particle can appear in both primary excitation and secondary emission, most authors and reviewers have found it convenient to group the techniques in a matrix, in which the columns refer to the nature of the exciting particle and the rows to the nature of the emitted particle [1.1-1.9]. Such a matrix of techniques is given in Tab. 1.1., which uses the acronyms now accepted. The meanings of the acronyms, together with some of the alternatives that have appeared in the literature, are given in Listing 1. [Pg.2]

A square matrix is one in which the number of columns is equal to the number of rows. An important type of square matrix which arises quite often in the finite element method is a symmetric matrix. Such matrices possess the property that aij = aji- An example of such a matrix is given below ... [Pg.433]

Matrix multiplication can be applied to vectors, if the latter are regarded as one-column matrices. This way, we can distinguish between four types of special matrix products, which are explained below and which are represented schematically in Fig. 29.6. [Pg.23]

In CFA we can derive biplots for each of the three types of transformed contingency tables which we have discussed in Section 32.3 (i.e., by means of row-, column- and double-closure). These three transformations produce, respectively, the deviations (from expected values) of the row-closed profiles F, of the column-closed profiles G and of the double-closed data Z. It should be reminded that each of these transformations is associated with a different metric as defined by W and W. Because of this, the generalized singular vectors A and B will be different also. The usual latent vectors U, V and the matrix of singular values A, however, are identical in all three cases, as will be shown below. Note that the usual singular vectors U and V are extracted from the matrix. ... [Pg.187]

Note that the interfacing of LC techniques with MS puts significant constraints on the solvents that can be used i.e., they must be volatile, with a low salt concentration, for MS compatibility. Narrow-bore columns, which use much smaller amounts of salt and organic modifier, appear to have potential for facilitating IEC-MS applications.40 Despite the excellent sensitivity of MS detection for most elements, however, there are cases where matrix effects can interfere. In this situation, combination of IEC with atomic emission spectrometry (AES) or atomic absorption spectrometry (AAS) may be preferable, and can also provide better precision.21 32 4142 Other types of... [Pg.288]


See other pages where Matrix types, column is mentioned: [Pg.535]    [Pg.329]    [Pg.33]    [Pg.40]    [Pg.243]    [Pg.155]    [Pg.87]    [Pg.273]    [Pg.139]    [Pg.131]    [Pg.485]    [Pg.486]    [Pg.284]    [Pg.18]    [Pg.231]    [Pg.973]    [Pg.976]    [Pg.18]    [Pg.168]    [Pg.402]    [Pg.431]    [Pg.109]    [Pg.111]    [Pg.238]    [Pg.268]    [Pg.390]    [Pg.5]    [Pg.65]    [Pg.164]    [Pg.76]    [Pg.229]    [Pg.312]    [Pg.432]    [Pg.761]    [Pg.997]    [Pg.189]    [Pg.403]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Column matrix

Matrix types, column constant

Matrix types, column diagonal

Matrix types, column square

Matrix types, column symmetric

© 2024 chempedia.info