Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Amines mass spectrometry

Amines have odd numbered molecular weights which helps identify them by mass spectrometry Fragmentation tends to be controlled by the formation of a nitrogen stabilized cation... [Pg.958]

Analytical methods iaclude thin-layer chromatography (69), gas chromatography (70), and specific methods for determining amine oxides ia detergeats (71) and foods (72). Nuclear magnetic resonance (73—75) and mass spectrometry (76) have also been used. A frequentiy used procedure for iadustrial amine oxides (77) iavolves titratioa with hydrochloric acid before and after conversion of the amine to the quaternary ammonium salt by reaction with methyl iodide. A simple, rapid quaHty control procedure has been developed for the deterrniaation of amine oxide and unreacted tertiary amine (78). [Pg.192]

An example of how information from fragmentation patterns can be used to solve structural problems is given in Worked Example 12.1. This example is a simple one, but the principles used are broadly applicable for organic structure determination by mass spectrometry. We ll see in the next section and in later chapters that specific functional groups, such as alcohols, ketones, aldehydes, and amines, show specific kinds of mass spectral fragmentations that can be interpreted to provide structural information. [Pg.413]

Properties of PS-A and PS-B (Shimomura, 1991b Shimomura et al., 1993b). Both PS-A and PS-B are colorless viscous liquid, and their absorption spectra resemble that of panal (Fig. 9.6). By NMR analysis and mass spectrometry, PS-A and PS-B are found to be 1-O-decanoylpanal and 1-O-dodecanoylpanal, respectively. As a minor component, 1-O-tetradecanoylpanal has also been isolated. PS-A and PS-B gain chemiluminescence activity when treated with the salt of primary amines (see below for the conditions). Taking the activity obtained with methylamine as 100%, the activities obtained with other amines were ethylamine, 38% ethanolamine, 10% propylamine, 20% hexylamine, 3% and decylamine, 1%. [Pg.283]

Mass spectrometry is a useful tool to detect the existence of reactive iron-imido intermediates. In intramolecular aromatic aminations, Que and coworkers used electrospray ionization mass spectrometry to show the presence of a molecular ion at m/z 590.3 and 621.2, which could be attributed to the formation of [(6-(o-TsN-C6H4)-TPA)Fe ]+ and [(6-(o-TsN-C6H4)-TPA)Fe° OMe)]+. With the isoto-... [Pg.122]

In a similar study, Gray et al. (60) investigated the possible formation of N-nitrosamines in heated chicken frankfurters which been prepared with various levels of nitrite (0-156 mg/kg). As expected, apparent N-nitrosamine levels increased with increasing concentrations of nitrite, but did not exceed 4 yg/kg except for two samples which contained 8 and II yg/kg of NMOR. The presence of these relatively high levels of NMOR was confirmed by mass spectrometry and raised the question as to its mode of formation. It was shown to be due to the morpholine present in the steam entering the smokehouse, as this amine is commonly used as a corrosion inhibitor in steam process equipment ( ). The detectable levels of NMOR in the Canadian study ( ) were also attributed in part to the use of morpholine as an anti-corrosion agent in the steam supply (62). [Pg.171]

In an acetone extract from a neoprene/SBR hose compound, Lattimer et al. [92] distinguished dioctylph-thalate (m/z 390), di(r-octyl)diphenylamine (m/z 393), 1,3,5-tris(3,5-di-f-butyl-4-hydroxybenzyl)-isocyanurate m/z 783), hydrocarbon oil and a paraffin wax (numerous molecular ions in the m/z range of 200-500) by means of FD-MS. Since cross-linked rubbers are insoluble, more complex extraction procedures must be carried out (Chapter 2). The method of Dinsmore and Smith [257], or a modification thereof, is normally used. Mass spectrometry (and other analytical techniques) is then used to characterise the various rubber fractions. The mass-spectral identification of numerous antioxidants (hindered phenols and aromatic amines, e.g. phenyl-/ -naphthyl-amine, 6-dodecyl-2,2,4-trimethyl-l,2-dihydroquinoline, butylated bisphenol-A, HPPD, poly-TMDQ, di-(t-octyl)diphenylamine) in rubber extracts by means of direct probe EI-MS with programmed heating, has been reported [252]. The main problem reported consisted of the numerous ions arising from hydrocarbon oil in the recipe. In older work, mass spectrometry has been used to qualitatively identify volatile AOs in sheet samples of SBR and rubber-type vulcanisates after extraction of the polymer with acetone [51,246]. [Pg.411]

I. A. Revel skii, Y. S. Yashin, V. N. Voznesenskii, V. K. Kurochkin, and R. G. Kostyanovskii. Mass Spectrometry with Photoionization of n-Alkanes, Alcohols, Ketones, Esters, and Amines at Atmospheric Pressure. Izv. AkadNauk SSSR Ser. Khim., 9(1986) 1987-1992. [Pg.74]

In the present study the surface chemistry of birnessite and of birnessite following the interaction with aqueous solutions of cobalt(II) and cobalt(III) amine complexes as a function of pH has been investigated using two surface sensitive spectroscopic techniques. X-ray photoelectron spectroscopy (XPS) and secondary ion mass spectrometry (SIMS). The significant contribution that such an investigation can provide rests in the information obtained regarding the chemical nature of the neat metal oxide and of the metal oxide/metal ion adsorbate surfaces, within about the top 50 of the material surface. The chemical... [Pg.504]

The reaction was second order in acid and first order in substrate, so both rearrangements and the disproportionation reaction proceed via the doubly-protonated hydrazobenzene intermediate formed in a rapid pre-equilibrium step. The nitrogen and carbon-13 kinetic isotope effects were measured to learn whether the slow step of each reaction was concerted or stepwise. The nitrogen and carbon-13 kinetic isotope effects were measured using whole-molecule isotope ratio mass spectrometry of the trifluoroacetyl derivatives of the amine products and by isotope ratio mass spectrometry on the nitrogen and carbon dioxide gases produced from the products. The carbon-12/carbon-14 isotope... [Pg.923]


See other pages where Amines mass spectrometry is mentioned: [Pg.533]    [Pg.387]    [Pg.510]    [Pg.786]    [Pg.790]    [Pg.829]    [Pg.46]    [Pg.1285]    [Pg.1304]    [Pg.304]    [Pg.369]    [Pg.25]    [Pg.204]    [Pg.187]    [Pg.337]    [Pg.236]    [Pg.60]    [Pg.1165]    [Pg.56]    [Pg.331]    [Pg.606]    [Pg.998]    [Pg.91]    [Pg.5]    [Pg.246]    [Pg.297]    [Pg.36]    [Pg.226]    [Pg.165]    [Pg.249]    [Pg.338]    [Pg.206]    [Pg.207]    [Pg.239]    [Pg.243]    [Pg.41]   
See also in sourсe #XX -- [ Pg.953 ]

See also in sourсe #XX -- [ Pg.953 ]

See also in sourсe #XX -- [ Pg.953 ]

See also in sourсe #XX -- [ Pg.894 ]

See also in sourсe #XX -- [ Pg.416 , Pg.954 ]

See also in sourсe #XX -- [ Pg.416 , Pg.954 ]

See also in sourсe #XX -- [ Pg.900 ]

See also in sourсe #XX -- [ Pg.969 ]

See also in sourсe #XX -- [ Pg.887 , Pg.887 ]

See also in sourсe #XX -- [ Pg.894 , Pg.895 ]

See also in sourсe #XX -- [ Pg.431 , Pg.981 ]




SEARCH



Amine oxides mass spectrometry

Heterocyclic aromatic amines mass spectrometry

Mass spectrometry Amine antioxidants

Mass spectrometry hindered amines

Mass spectrometry of amines

© 2024 chempedia.info