Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass cathodic charge-transfer reaction

Mass spectrometric studies of the ionic species which arrive at the cathode of both glow and corona discharges yield useful information regarding ion-molecule reactions which occur within these systems. Glow discharges have been used to study endothermic reactions, and their usefulness and limitations have been demonstrated by studies of the dissociative charge transfer reactions Ar+ + N2 N+ + N + Ar N2+ + N2 N+ + N + N2 N2+ + 02 0+ + O + N2. Exo-... [Pg.321]

If net cathodic current flows then this potential is shifted negatively. Concentration polarization (alternatively called -> mass-transport polarization or - concentration overpotential) is encountered if the rate of transport of the redox reactant to the electrode surface is lower than that of the -> charge-transfer reaction. Together with the charge-transfer or -> activation polarization (overpotential), q3, and the polarization (overpotential) due to a preceding chemical reaction, qrxn> (see... [Pg.419]

The ratio of the CH4-to-H2 direct decomposition rate to that of the CH4 steam-reforming reaction one was not found to be different from location to location in the porous electrode. Therefore, it was considered that the supply of H2O was sufficient in the present experiment. It was probable that a sufficient amount of CH4 and H2O diffused through the porous electrode and arrived at an electrodeelectrolyte interface. The direct decomposition reaction as well as the steam-reforming reaction simultaneously occurred at a narrow interface imder the condition of the sufficient supply of electric charge to the cathode electrode. As seen in Figure 9, some carbon deposited at the narrow interface between the electrolyte and electrode. This may be because the steam-reforming reaction was slower than the protonic conductivity of electrolyte and, consequently, the direct decomposition of CH4 provided electron and H+ ion to the interface. Since the carbon deposition was localized at the interface. Therefore, there was no effect on the mass and charge transfer in the present cell system. [Pg.351]

Here, we assume that electron transfer only occurs via the CB and not via surface states. As in a Schottky diode, j generally increases exponentially with (decreasing) potential (Fig. 3a). The form of the dark current-potential curve, however, depends on the mechanism and kinetics of the charge-transfer reaction. At high overpotential, corresponding to a large deviation from equilibrium, the reaction expressed by Eq. (4) may become limited by mass transport in solution, that is, the cathodic current becomes potential-independent (this is not shown in Fig. 3). [Pg.65]

Over the years the original Evans diagrams have been modified by various workers who have replaced the linear E-I curves by curves that provide a more fundamental representation of the electrode kinetics of the anodic and cathodic processes constituting a corrosion reaction (see Fig. 1.26). This has been possible partly by the application of electrochemical theory and partly by the development of newer experimental techniques. Thus the cathodic curve is plotted so that it shows whether activation-controlled charge transfer (equation 1.70) or mass transfer (equation 1.74) is rate determining. In addition, the potentiostat (see Section 20.2) has provided... [Pg.94]

It is an experimental fact that whenever mass transfer limitations are excluded, the rate of charge transfer for a given electrochemical reaction varies exponentially with the so-called overpotential rj, which is the potential difference between the equilibrium potential F0 and the actual electrode potential E (t) = E — Ed). Since for the electrode reaction Eq. (1) there exists a forward and back reaction, both of which are changed by the applied overpotential in exponential fashion but in an opposite sense, one obtains as the effective total current density the difference between anodic and cathodic partial current densities according to the generalized Butler-Volmer equation ... [Pg.89]

The effects of the catalytic reaction on the CV curve are related to the value of dimensionless parameter A in whose expressions appear variables related to the chemical reaction and also to the geometry of the diffusion field. For small values of A, the surface concentration of species C is scarcely affected by the catalysis for any value of the electrode radius, such that r)7,> —> c c and the current becomes identical to that corresponding to a pseudo-first-order catalytic mechanism (see Eq. (6.203)). In contrast, for high values of A and f —> 1 (cathodic limit), the rate-determining step of the process is the mass transport. In this case, the catalytic limiting current coincides with that obtained for a simple charge transfer process. [Pg.458]

It is useful now to describe the origins of the shape of the anodic and cathodic E-log i behaviors shown in Fig. 2. Note that the anodic reaction is linear on the E-log i plot because it is charge transfer controlled and follows Tafel behavior discussed in Chapter 2. The cathodic reaction is under mixed mass transport control (charge transfer control at low overpotential and mass transport control at high overpotential) and can be described by Eq. (1), which... [Pg.152]

Figure 2 Evans diagram illustrating the influence of solution velocity on corrosion rate for a cathodic reaction under mixed charge transfer-mass transport control. The anodic reaction shown is charge transfer controlled. Figure 2 Evans diagram illustrating the influence of solution velocity on corrosion rate for a cathodic reaction under mixed charge transfer-mass transport control. The anodic reaction shown is charge transfer controlled.
Therefore let us instead consider the more practical case of the tertiary current distribution. Based on the dependency of the Wagner number on polarization slope, we would predict that a pipe cathodically protected to a current density near its mass transport limited cathodic current density would have a more uniform current distribution than a pipe operating under charge transfer control. Of course the cathodic current density cannot exceed the mass transport limited value at any location on the pipe, as said in Chapter 4. Consider a tube that is cathodically protected at its entrance with a zinc anode in neutral seawater (4). Since the oxygen reduction reaction is mass transport limited, the Wagner number is large for the cathodically protected pipe (Fig. 12a), and a relatively uniform current distribution is predicted. However, if the solution conductivity is lowered, the current distribution will become less uniform. Finite element calculations and experimental confirmations (Fig. 12b) confirm the qualitative results of the Wagner number (4). [Pg.200]

Figure 6.21 shows the AC impedance spectra for the cathodic ORR of the cell electrodes prepared using the conventional method and the sputtering method. It can be seen that the spectra of electrodes 2 and 3 do not indicate mass transport limitation at either potentials. For electrode 1, a low-frequency arc develops, due to polarization caused by water transport in the membrane. It is also observable that the high-frequency arc for the porous electrode is significantly depressed from the typical semicircular shape. Nevertheless, the real-axis component of the arc roughly represents the effective charge-transfer resistance, which is a function of both the real surface area of the electrode and the surface concentrations of the species involved in the electrode reaction. [Pg.285]


See other pages where Mass cathodic charge-transfer reaction is mentioned: [Pg.114]    [Pg.94]    [Pg.10]    [Pg.152]    [Pg.160]    [Pg.159]    [Pg.167]    [Pg.346]    [Pg.104]    [Pg.25]    [Pg.143]    [Pg.276]    [Pg.347]    [Pg.457]    [Pg.137]    [Pg.90]    [Pg.328]    [Pg.7]    [Pg.37]    [Pg.282]    [Pg.201]    [Pg.375]    [Pg.237]    [Pg.359]    [Pg.221]    [Pg.205]    [Pg.153]    [Pg.155]    [Pg.156]    [Pg.160]    [Pg.162]    [Pg.163]   
See also in sourсe #XX -- [ Pg.198 ]




SEARCH



Cathode reaction

Cathode transfer

Cathodic reactions

Charge Transfer Reactions

Charge reaction

Mass transfer reaction

Mass/charge

© 2024 chempedia.info