Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Many-body perturbation theory configuration interaction

There are three main methods for calculating electron correlation Configuration Interaction (Cl), Many Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we describe these methods in more details. The Slater determinants are composed of spin-MOs, but since the Hamilton operator is independent of spin, the spin dependence can be factored out. Furthermore, to facilitate notation, it is often assumed that the HF determinant is of the RHF type. Finally, many of the expressions below involve double summations over identical sets of functions. To ensure only the unique terms are included, one of the summation indices must be restricted. Alternatively, both indices can be allowed to run over all values, and the overcounting corrected by a factor of 1/2. Various combinations of these assumptions result in final expressions which differ by factors of 1 /2, 1/4 etc. from those given here. In the present book the MOs are always spin-MOs, and conversion of a restricted summation to an unrestricted is always noted explicitly. [Pg.101]

If we except the Density Functional Theory and Coupled Clusters treatments (see, for example, reference [1] and references therein), the Configuration Interaction (Cl) and the Many-Body-Perturbation-Theory (MBPT) [2] approaches are the most widely-used methods to deal with the correlation problem in computational chemistry. The MBPT approach based on an HF-SCF (Hartree-Fock Self-Consistent Field) single reference taking RHF (Restricted Hartree-Fock) [3] or UHF (Unrestricted Hartree-Fock ) orbitals [4-6] has been particularly developed, at various order of perturbation n, leading to the widespread MPw or UMPw treatments when a Moller-Plesset (MP) partition of the electronic Hamiltonian is considered [7]. The implementation of such methods in various codes and the large distribution of some of them as black boxes make the MPn theories a common way for the non-specialist to tentatively include, with more or less relevancy, correlation effects in the calculations. [Pg.39]

For Three Molecules in Valence Double-Zeta Basis Sets, a Comparison of Energies in Hartrees (H) from the 2-RDM Method with the T2 Condition (DQGT2) with the Energies from Second-Order Many-Body Perturbation Theory (MP2), Coupled-Cluster Method with Single-Double Excitations and a Perturbative Triples Correction (CCSD(T)), and Full Configuration Interaction (FCI)... [Pg.52]

The reconstruction functionals may be understood as substantially renormalized many-body perturbation expansions. When exact lower RDMs are employed in the functionals, contributions from all orders of perturbation theory are contained in the reconstructed RDMs. As mentioned previously, the reconstruction exactly accounts for configurations in which at least one particle is statistically isolated from the others. Since we know the unconnected p-RDM exactly, all of the error arises from our imprecise knowledge of the connected p-RDM. The connected nature of the connected p-RDM will allow us to estimate the size of its error. For a Hamiltonian with no more than two-particle interactions, the connected p-RDM will have its first nonvanishing term in the (p — 1) order of many-body perturbation theory (MBPT) with a Hartree-Fock reference. This assertion may be understood by noticing that the minimum number of pairwise potentials V required to connectp particles completely is (p — 1). It follows from this that as the number of particles p in the reconstmcted RDM increases, the accuracy of the functional approximation improves. The reconstmction formula in Table I for the 2-RDM is equivalent to the Hartree-Fock approximation since it assumes that the two particles are statistically independent. Correlation corrections first appear in the 3-RDM functional, which with A = 0 is correct through first order of MBPT, and the 4-RDM functional with A = 0 is correct through second order of MBPT. [Pg.178]

So Hirata, Tensor contraction engine abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories. J. Phys. Chem. A 107, 4940 (2003). [Pg.384]

The second step of the calculation involves the treatment of dynamic correlation effects, which can be approached by many-body perturbation theory (62) or configuration interaction (63). Multireference coupled-cluster techniques have been developed (64—66) but they are computationally far more demanding and still not established as standard methods. At this point, we will only focus on configuration interaction approaches. What is done in these approaches is to regard the entire zeroth-order wavefunc-tion Tj) or its constituent parts double excitations relative to these reference functions. This produces a set of excited CSFs ( Q) that are used as expansion space for the configuration interaction (Cl) procedure. The resulting wavefunction may be written as... [Pg.317]

Although HF theory is useful in its own right for many kinds of investigations, there are some applications for which the neglect of electron correlation or the assumption that the error is constant (and so will cancel) is not warranted. Post-Hartree-Fock methods seek to improve the description of the electron-electron interactions using HF theory as a reference point. Improvements to HF theory can be made in a variety of ways, including the method of configuration interaction (Cl) and by use of many-body perturbation theory (MBPT). It is beyond the scope of this text to treat Cl and MBPT methods in any but the most cursory manner. However, both methods can be introduced from aspects of the theory already discussed. [Pg.239]

Since the Dirac equation is written for one electron, the real problem of ah initio methods for a many-electron system is an accurate treatment of the instantaneous electron-electron interaction, called electron correlation. The latter is of the order of magnitude of relativistic effects and may contribute to a very large extent to the binding energy and other properties. The DCB Hamiltonian (Equation 3) accounts for the correlation effects in the first order via the Vy term. Some higher order of magnitude correlation effects are taken into account by the configuration interaction (Cl), the many-body perturbation theory (MBPT) and by the presently most accurate coupled cluster (CC) technique. [Pg.40]

In the section that follows this introduction, the fundamentals of the quantum mechanics of molecules are presented first that is, the localized side of Fig. 1.1 is examined, basing the discussion on that of Levine (1983), a standard quantum-chemistry text. Details of the calculation of molecular wave functions using the standard Hartree-Fock methods are then discussed, drawing upon Schaefer (1972), Szabo and Ostlund (1989), and Hehre et al. (1986), particularly in the discussion of the agreement between calculated versus experimental properties as a function of the size of the expansion basis set. Improvements on the Hartree-Fock wave function using configuration-interaction (Cl) or many-body perturbation theory (MBPT), evaluation of properties from Hartree-Fock wave functions, and approximate Hartree-Fock methods are then discussed. [Pg.94]


See other pages where Many-body perturbation theory configuration interaction is mentioned: [Pg.40]    [Pg.29]    [Pg.219]    [Pg.194]    [Pg.146]    [Pg.220]    [Pg.53]    [Pg.194]    [Pg.338]    [Pg.76]    [Pg.229]    [Pg.82]    [Pg.368]    [Pg.227]    [Pg.228]    [Pg.249]    [Pg.222]    [Pg.270]    [Pg.265]    [Pg.99]    [Pg.189]    [Pg.568]    [Pg.280]    [Pg.181]    [Pg.299]    [Pg.4]    [Pg.31]    [Pg.32]    [Pg.167]    [Pg.3]    [Pg.16]    [Pg.90]    [Pg.108]    [Pg.82]    [Pg.314]    [Pg.189]    [Pg.568]   


SEARCH



Body Perturbation Theory

Configuration Interaction

Configuration interaction theory

Configurational interaction

Interaction Theory

Many theory

Many-body

Many-body interaction

Many-body perturbation theory

Many-body theories

Perturbational configuration interaction

Perturbative Configuration Interaction

© 2024 chempedia.info