Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manipulating Molecules with Electric Fields

The different tools that were developed in the past to transversally manipulate molecular beams, dating back to the Stern and Rabi era, have proven to be crucial for developments beyond molecular physics alone. The complete control over the full three-dimensional motion of molecules, now adds a new dimension to the long and rich history of the manipulation of molecules with electric fields. [Pg.476]

Manipulation of Molecules with Electric Fields Sebastiaan Y. T. van de Meerakker, Hendrick L. Bethlern and Gerard Meijer... [Pg.578]

The second class of atomic manipulations, the perpendicular processes, involves transfer of an adsorbate atom or molecule from the STM tip to the surface or vice versa. The tip is moved toward the surface until the adsorption potential wells on the tip and the surface coalesce, with the result that the adsorbate, which was previously bound either to the tip or the surface, may now be considered to be bound to both. For successful transfer, one of the adsorbate bonds (either with the tip or with the surface, depending on the desired direction of transfer) must be broken. The fate of the adsorbate depends on the nature of its interaction with the tip and the surface, and the materials of the tip and surface. Directional adatom transfer is possible with the apphcation of suitable junction biases. Also, thermally-activated field evaporation of positive or negative ions over the Schottky barrier formed by lowering the potential energy outside a conductor (either the surface or the tip) by the apphcation of an electric field is possible. FIectromigration, the migration of minority elements (ie, impurities, defects) through the bulk soHd under the influence of current flow, is another process by which an atom may be moved between the surface and the tip of an STM. [Pg.204]

Chen et al. reported on a general approach by which the polarization of the emission from semiconductor nanorods can be manipulated by an external bias. In their device, the composite of a nematic liquid crystal mixture (E7, Merck) and nanorods (CdS) filled into an ITO-coated cell with an optimized concentration of one CdS nanorod per 1010 LC molecules was used to achieve the highest polarization ratio of the suspended nanorods [447, 448]. The nematic liquid crystal in this system acts as a solvent and media whose direction of alignment can be tuned by an applied electric field. Hence, the orientation of the CdS nanorods can be fine-tuned by an external bias because of the anchoring force between the liquid crystal... [Pg.365]

Charged solutes in electrolyte solutions that are electrokinetically driven through channels with nanoscale widths exhibit unique transport characteristics that may enable rapid and efficient separations under a variety of physiological and environmental conditions. Many biomolecules, including DNA, proteins, and peptides, are charged or can be complexed with charged surfactant molecules. Manipulating the velocity of biomolecules by variation in flow pressure or electric fields in channels of nanoscopic widths will enable efficient separations that are not possible in micro- or macroscopic channels. [Pg.51]

An STM manipulation mechanism related to the adsorption and desorption processes of single atoms and molecules is known as vertical manipulation (Fig. 10). This process involves transfer of single atoms or molecules between the tip and substrate and vice versa (Fig. 10(a)). An atomic switch realized by the repeated transfer of a Xe atom between the STM tip and a Ni(110) substrate is the first example of vertical manipulation [22]. The atom/molecule transfer process can be realized by using an electric field between the tip and sample, or by multiple excitations with inelastic tunneling electrons, or by making mechanical contact between the tip and atom/molecule. This transfer mechanism can be modeled by using a double potential well as shown in Fig. 10(b). At an imaging distance, approximately 6 A between tip and surface, the atom/molecule has two possible... [Pg.193]


See other pages where Manipulating Molecules with Electric Fields is mentioned: [Pg.84]    [Pg.433]    [Pg.435]    [Pg.435]    [Pg.437]    [Pg.439]    [Pg.441]    [Pg.443]    [Pg.445]    [Pg.447]    [Pg.449]    [Pg.451]    [Pg.453]    [Pg.455]    [Pg.457]    [Pg.459]    [Pg.461]    [Pg.463]    [Pg.465]    [Pg.467]    [Pg.469]    [Pg.471]    [Pg.477]    [Pg.479]    [Pg.499]    [Pg.725]    [Pg.228]    [Pg.230]    [Pg.231]    [Pg.152]    [Pg.149]    [Pg.244]    [Pg.338]    [Pg.340]    [Pg.52]    [Pg.942]    [Pg.81]    [Pg.166]    [Pg.62]    [Pg.302]    [Pg.147]    [Pg.52]   


SEARCH



Molecules field

© 2024 chempedia.info