Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Manganese complexes oxidation catalysts

The applicability of the Sharpless asymmetric epoxidation is however limited to functionalized alcohols, i.e. allylic alcohols (see Table 4.11). The best method for non-functionalized olefins is the Jacobsen-Kaksuki method. Only a few years after the key publication of Kochi and coworkers on salen-manganese complexes as catalysts for epoxidations, Jacobsen and Kaksuki independently described, in 1990, the use of chiral salen manganese (111) catalysts for the synthesis of optically active epoxides [276, 277] (Fig. 4.99). Epoxidations can be carried out using commercial bleach (NaOCl) or iodosylbenzene as terminal oxidants and as little as 0.5 mol% of catalyst. The active oxidant is an oxomanganese(V) species. [Pg.196]

Historically, the interest of using manganese complexes as catalysts for the epox-idation of alkenes comes from biologically relevant oxidative manganese porphyrins. The terminal oxidants compatible with manganese porphyrins were initially restricted to iodosylbenzene, sodium hypochlorite, alkyl peroxides and hydroperoxides, JV-oxides, KHSO5, and oxaziridines. Molecular oxygen can also be used in the... [Pg.47]

Ordinary alkenes (without an allylic OH group) have been enantioselectively epoxidized with sodium hypochlorite (commercial bleach) and an optically active manganese-complex catalyst. Variations of this oxidation use a manganese-salen complex with various oxidizing agents, in what is called the Jacobsen-Katsuki... [Pg.1053]

Asymmetric epoxidation is another important area of activity, initially pioneered by Sharpless, using catalysts based on titanium tetraisoprop-oxide and either (+) or (—) dialkyl tartrate. The enantiomer formed depends on the tartrate used. Whilst this process has been widely used for the synthesis of complex carbohydrates it is limited to allylic alcohols, the hydroxyl group bonding the substrate to the catalyst. Jacobson catalysts (Formula 4.3) based on manganese complexes with chiral Shiff bases have been shown to be efficient in epoxidation of a wide range of alkenes. [Pg.117]

The vanadium(IV) complex of salen in zeolite was found to be an effective catalyst for the room temperature epoxidation of cyclohexene using t-butyl hydroperoxide as oxidant.88 Well-characterized vanadyl bis-bipyridine complexes encapsulated in Y zeolite were used as oxidation catalysts.101 Ligation of manganese ions in zeolites with 1,4,7-triazacyclononanes gives rise to a binu-clear complex stabilized by the zeolites but allows oxidation with excellent selectivity (Scheme 7.4). [Pg.254]

Pseudooctahedral complexes of the N4 donor cyclam of type [Mn(cyclam)X2]Y, where X and Y are a range of monovalent anions, have been reported." The efficacy of a complex of this type (with X = Y = Cl) as an oxidation catalyst has been probed. In another study both manganese(II) and manganese(III) complexes of the tetraaza macrocycle (175) have been characterized and were shown to be of types [MnLCy O.SHCl and [MnL(N3)2]N3. The traw -octahedral structures of both species have been confirmed by X-ray diffraction studies. [Pg.68]

A second manufacturing method for acetic acid utilizes butane from the C4 petroleum stream rather than ethylene. It is a very complex oxidation with a variety of products formed, but conditions can be controlled to allow a large percentage of acetic acid to be formed. Cobalt (best), manganese, or chromium acetates are catalysts with temperatures of 50-250 °C and a pressure of 800 psi. [Pg.151]

Without additives, radical formation is the main reaction in the manganese-catalyzed oxidation of alkenes and epoxide yields are poor. The heterolytic peroxide-bond-cleavage and therefore epoxide formation can be favored by using nitrogen heterocycles as cocatalysts (imidazoles, pyridines , tertiary amine Af-oxides ) acting as bases or as axial ligands on the metal catalyst. With the Mn-salen complex Mn-[AI,AI -ethylenebis(5,5 -dinitrosalicylideneaminato)], and in the presence of imidazole as cocatalyst and TBHP as oxidant, various alkenes could be epoxidized with yields between 6% and 90% (in some cases ionol was employed as additive), whereby the yields based on the amount of TBHP consumed were low (10-15%). Sterically hindered additives like 2,6-di-f-butylpyridine did not promote the epoxidation. [Pg.443]

Metal salts and complexes have also often been used as redox catalysts for the indirect electrochemical oxidation of alcohols. Particularly, the transformation of benzylic alcohols to benzaldehydes has been studies. For this purpose oxoruthe-nium(IV) and oxoruthenium(V) complexes have been applied as redox catalysts. In a similar way, certain benzyl ethers can be cleaved to yield benzaldehydes and the corresponding alcohols using a di-oxo-bridged binuclear manganese complex Electrogenerated 02(804)3 was used to generated 1-naphthaldehyde from 1-naphthylmethanol... [Pg.17]

The use of Mn-salen catalysts for asymmetric epoxidation has been reviewed.30 Oxo(salen)manganese(V) complexes, generated by the action of PhIO on the corresponding Mn(III) complexes, have been used to oxidize aryl methyl sulfides to sulfoxides.31 The first example of C—H bond oxidation by a (/r-oxo (manganese complex has been reported.32 The rate constants for the abstraction of H from dihydroanthracene correlate roughly with O—H bond strengths. [Pg.181]

A catalytic route using a manganese (III) complex has been developed for a-hydroxylation of ketones avoiding the use of water or a protic solvent mixtures of a-hydroxyketones and their silyl derivatives were formed in excellent yield. By using a chiral pyrrolidine-based manganese (III) complex as catalyst, asymmetric oxidation was effected, with enantiomeric excess varying from 14 to 62% [30], Another kind of a-functionalized ketones resulted from silyl enol ethers which after the addition of IOB.BF3 were treated with triethyl phosphite a-ketophosphonates were obtained in this way [31] ... [Pg.88]

The unique versatility of ruthenium as an oxidation catalyst continues to provide a stimulus for research on a variety of oxidative transformations. Its juxtaposition in the periodic table and close similarity to the biological redox elements, iron and manganese, coupled with the accessibility of various high-valent oxo species by reaction of lower-valent complexes with dioxygen make ruthenium an ideal candidate for suprabiotic catalysis. [Pg.316]

In the same year (1990) that Jacobsen reported his asymmetric epoxidation, a group led by Tsutomu Katsuki at the University of Kyushu in Japan reported a closely related asymmetric epoxidation. The chiral catalyst is also a salen and the metal manganese. The oxidant is iodosobenzene (Phl=0) but this method works best for E-alkenes. It is no coincidence that Katsuki and Jacobsen both worked for Sharpless. It is not unusual for similar discoveries to be made independently in different parts of the world, the Katsuki manganese salen complex... [Pg.1489]


See other pages where Manganese complexes oxidation catalysts is mentioned: [Pg.201]    [Pg.223]    [Pg.74]    [Pg.206]    [Pg.99]    [Pg.574]    [Pg.264]    [Pg.161]    [Pg.221]    [Pg.380]    [Pg.66]    [Pg.35]    [Pg.37]    [Pg.385]    [Pg.449]    [Pg.536]    [Pg.409]    [Pg.57]    [Pg.285]    [Pg.443]    [Pg.449]    [Pg.536]    [Pg.345]    [Pg.282]    [Pg.529]    [Pg.814]    [Pg.776]    [Pg.342]    [Pg.146]    [Pg.189]    [Pg.198]   
See also in sourсe #XX -- [ Pg.355 ]

See also in sourсe #XX -- [ Pg.355 ]

See also in sourсe #XX -- [ Pg.6 , Pg.355 ]




SEARCH



Manganese catalysts

Manganese complexes

Manganese complexes catalysts

Manganese complexes oxidation

Manganese complexes oxides

Manganese complexing

Manganese oxidation

Manganese-oxidizing

Oxidants manganese

Oxidation manganese catalysts

© 2024 chempedia.info