Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Malonic mixed

Substitution Derivatives of Ethyl Malonate, Ethyl malonate resembles ethyl acetoacetate in that it gives rise to mono- and di-substituted derivatives in precisely similar circumstances. Thus when ethanolic solutions of ethyl malonate and of sodium ethoxide are mixed, the sodium derivative (A) of the enol form is produced in solution. On boiling this solution with an alkyl halide, e.g, methyl iodide, the methyl derivative (B) of the keto form is obtained. When this is treated again in ethanolic solution with sodium ethoxide, the... [Pg.275]

While the sodium ethoxide solution is cooling, prepare a solution of 7 7 g. of finely powdered iodine in 60 ml. of ether. When this solution is ready, add 9 ml. (9 6 g.) of ethyl malonate to the ethanolic sodium ethoxide solution, mix w ell and then allow to stand for 30-60 seconds not longer) then cautiously add the ethereal solution of the iodine, mixing thoroughly during the addition in order to avoid local overheating by the heat of the reaction. (If, after the ethyl malonate has been added to the sodium ethoxide, a considerable delay occurs before the iodine is added, the yield of the final product is markedly decreased.)... [Pg.276]

Mix together in a 250 ml. flask carrying a reflux condenser and a calcium chloride drying tube 25 g. (32 ml.) of freshly-distilled acetaldehyde with a solution of 59-5 g. of dry, powdered malonic acid (Section 111,157) in 67 g. (68-5 ml.) of dry pyridine to which 0-5 ml. of piperidine has been added. Leave in an ice chest or refrigerator for 24 hours. Warm the mixture on a steam bath until the evolution of carbon dioxide ceases. Cool in ice, add 60 ml. of 1 1 sulphuric acid (by volume) and leave in the ice bath for 3-4 hours. Collect the crude crotonic acid (ca. 27 g.) which has separated by suction filtration. Extract the mother liquor with three 25 ml. portions of ether, dry the ethereal extract, and evaporate the ether the residual crude acid weighs 6 g. Recrystallise from light petroleum, b.p. 60-80° the yield of erude crotonic acid, m.p. 72°, is 20 g. [Pg.464]

Conduct the preparation in the fume cupboard. Dissolve 250 g. of redistilled chloroacetic acid (Section 111,125) in 350 ml. of water contained in a 2 -5 litre round-bottomed flask. Warm the solution to about 50°, neutralise it by the cautious addition of 145 g. of anhydrous sodium carbonate in small portions cool the resulting solution to the laboratory temperature. Dissolve 150 g. of sodium cyanide powder (97-98 per cent. NaCN) in 375 ml. of water at 50-55°, cool to room temperature and add it to the sodium chloroacetate solution mix the solutions rapidly and cool in running water to prevent an appreciable rise in temperature. When all the sodium cyanide solution has been introduced, allow the temperature to rise when it reaches 95°, add 100 ml. of ice water and repeat the addition, if necessary, until the temperature no longer rises (1). Heat the solution on a water bath for an hour in order to complete the reaction. Cool the solution again to room temperature and slowly dis solve 120 g. of solid sodium hydroxide in it. Heat the solution on a water bath for 4 hours. Evolution of ammonia commences at 60-70° and becomes more vigorous as the temperature rises (2). Slowly add a solution of 300 g. of anhydrous calcium chloride in 900 ml. of water at 40° to the hot sodium malonate solution mix the solutions well after each addition. Allow the mixture to stand for 24 hours in order to convert the initial cheese-Uke precipitate of calcium malonate into a coarsely crystalline form. Decant the supernatant solution and wash the solid by decantation four times with 250 ml. portions of cold water. Filter at the pump. [Pg.490]

The reaction can be applied to allyl malonates. Alkylation of diallyl mal-onate (734) with bromoacetate and acetoxymethylation afford the mixed triester 735. Treatment of the tricster 735 with Pd catalyst affords allyl ethyl itaconate (736). In a similar way, a-methylene lactone and the lactam 737 can be prepared[462]. [Pg.391]

Meerwein s Ester (9) Dimethyl malonate (13.2 g, 0.4 mole) and 6 g of 40 % aqueous formaldehyde solution are mixed in an Erlenmeyer flask and cooled to 0° in an ice bath. To the mixture is added 0.3 g of piperidine and enough ethanol to produce a homogeneous solution. The solution is allowed to stand at 0° for 12 hours, at room temperature for 24 hours, and at 35 0° for 48 hours. The reaction product is washed with water (50 ml) followed by dilute sulfuric acid, then dried (sodium sulfate). Unreacted malonic ester is distilled off under vacuum leaving a residue of about 12.5 g, which contains methylenemalonic ester, methylenebismalonic ester, and hexacarbomethoxypentane. [Pg.92]

A solution of 600 g. of anhydrous calcium chloride in 1800 cc. of water warmed to 40° is added slowly with rapid mixing to the hot sodium malonate solution. A cheese-like precipitate of calcium malonate is formed immediately and becomes coarsely crystalline on standing for twenty-four hours. After the supernatant solution is decanted, the calcium malonate is washed by decantation four or five times with 500-cc. portions of cold water. It is then transferred to a filter, sucked as dry as possible, and dried in the air, or at 45-50°, to constant weight. The yield is 800-900 g. [Pg.51]

A large number of trialkylacetic acid esters have been prepared by mixed Kolbe electrolysis of ethyl malonates [164]. Crossed-coupling is also used for chain extension. Extension by two carbon atoms is achieved with benzyl succinates [153, 180-182], whereby the purification of the chain extended fatty acid is simphfied by using the benzyl half ester [181a]. [Pg.107]

OS 52[ [OS 53[ [OS 54[ [OS 55[ [R 4b[ [P 38[ In a two-micro-mixing tee chip reactor, substrates with diketone moieties of known different reactivity, such as 2,4-pentanedione, benzoylacetone and diethyl malonate, were processed, each with the same acceptor ethyl propiolate [8]. Also, a reaction with the less alkynic Michael acceptor methyl vinyl ketone was carried out. [Pg.494]

The conversions observed followed the sequence of reactivity known from batch experiments carried out in advance. For example, only 15% conversion was found for the less reactive reagent benzoylacetone in the micro reactor experiment, while 56% was determined when using the more reactive 2,4-pentanedione (batch syntheses 78% and 89%, respectively) [8]. Using the stopped-flow technique (2.5 s with field applied 5.0 s with field turned off) to enhance mixing, the conversions for both syntheses were increased to 34 and 95%, respectively. Using a further improved stopped-flow technique (5.0 s with field applied 10.0 s with field turned off), the conversion could be further enhanced to 100% for the benzoylacetone case. For the other two substrates, diethyl malonate and methyl vinyl ketone, similar trends were observed. [Pg.494]

The complexation of other mixed oxa aza macrocycles has been studied, and protonation and stability constants of the zinc complexes of macrocycles l,4,10,13-tetraoxa-7,16-diazacycloocta-decane-7,16-bis(malonate), the -7-malonate derivative and -7,16-bis(methylacetate) derivative have been determined by potentiometry at a 1 1 ligand-to-metal ratio.730... [Pg.1211]

An NMR investigation of water exchange at [Pt(H20)2(oxalate)2] is relevant to the mechanism of formation of one-dimensional mixed valence oxalatoplatinum polymers. In fact the rate constant for this presumably dissociative (AS = + 42 JK mol-1) reaction is considerably too low for water loss to be, as recently proposed, the first step in formation of these polymers. The mechanism of trans to cis isomerization for this oxalate complex, and for its (2 -methyl)malonate analogues, is intramolecular (Bailar or Ray-Dutt twist), since there is no concurrent incorporation of labeled solvent (177). [Pg.94]

Several octahedral dihydrazine metal (II) salts of this class were prepared and thermally decomposed. The succinates and malonates of nickel and cadmium decomposed explosively [1]. A later paper on mixed metal bis-hydrazine malonates of cobalt with magnesium, manganese, nickel, zinc or cadmium recommends that decomposition, in a pre-heated crucible at 500°C, be of small quantities only. The same workers have reported exothermic decomposition of similar hydrazine complexed salts of other small organic acids. [Pg.195]

Mix 230 ml of dry ethanol with 32.5 g of sodium methoxide under a nitrogen atmosphere until the methoxide is dissolved. Add 110 g of diethyl malonate and stir for 10 min, then add 75 g of 3-nonene-2-one (or equimolar amount of 5,6-dimethylundec-3-ene-2-one for dimethyl-heptyl) keeping the temp below 49° with external cooling. Stir and reflux for 3 hours, cool to room temp, neutralize with coned HCL add (about 45 ml), and let stand for 8-12 hours. Evaporate in vacuo, and dissolve the residue in 1 N HCl acid and 800 ml ethylacetate. Allow to stand to separate the ethyl acetate, then wash it (the acetate) with two 300 ml portions of water and extract with a saturated solution of NaHCOs until a small sample shows no turbidity upon acidification (it will take at least nine 100 ml portion extractions). Combine the NaHCOs extractions and very carefully acidify them with tiny portions of acid. Extract with three 300 ml portions of ether, and remove the ether by evaporation in vacuo after drying with MgS04 to get the methyl-carboxylate. [Pg.75]

The acetic anhydride-induced cyclodehydration of the symmetrical diamide 411, derived from the tetrahydro-benzothiophene / -amino ester 410 and diethyl malonate, afforded the thieno[2,3-r7 [h3]oxazine derivative 413 rather than the expected bis-oxazine 412 (Scheme 78). The reaction probably takes place through sequential cyclizations, in which the pyridine ring of 413 is produced by condensation of the exocyclic double bond of the enamine tautomeric form of the 1,3-oxazine moiety and the mixed anhydride formed by the carboxylic group and acetic anhydride <2003PS245>. [Pg.426]


See other pages where Malonic mixed is mentioned: [Pg.183]    [Pg.183]    [Pg.248]    [Pg.476]    [Pg.467]    [Pg.406]    [Pg.164]    [Pg.360]    [Pg.1294]    [Pg.650]    [Pg.803]    [Pg.159]    [Pg.393]    [Pg.570]    [Pg.16]    [Pg.16]    [Pg.428]    [Pg.714]    [Pg.72]    [Pg.411]    [Pg.59]    [Pg.197]    [Pg.219]    [Pg.42]    [Pg.219]    [Pg.243]    [Pg.460]    [Pg.321]    [Pg.328]    [Pg.339]    [Pg.664]    [Pg.344]   


SEARCH



Malonic anhydrides mixed

© 2024 chempedia.info