Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low shear

The modification of the surface force apparatus (see Fig. VI-4) to measure viscosities between crossed mica cylinders has alleviated concerns about surface roughness. In dynamic mode, a slow, small-amplitude periodic oscillation was imposed on one of the cylinders such that the separation x varied by approximately 10% or less. In the limit of low shear rates, a simple equation defines the viscosity as a function of separation... [Pg.246]

Wagner and DUlont have described a low-shear viscometer in which the inside diameter of the outer, stationary cylinder is 30 mm and the outside diameter of the inner, rotating cylinder is 28 mm the rotor is driven by an electromagnet. The device operates at 135°C and was found to be free of wobble and turbulence for shear rates between 3 and 8 sec V The conversion of Eq. (2.7) to Eq. (2.9) shows that F/A = (i7)(dv/dr) (instrument constant) for these instruments Evaluate the instrument constant for this viscometer. [Pg.128]

Minimization of the elastic behavior of the fluid at high deformation rates that are present when high molecular weight water-soluble polymers are used to obtain cost-efficient viscosities at low shear rates. [Pg.320]

Elastomeric shield materials (ESM) have been developed as low density flexible ablators for low shear appHcations (49). General Electric s RTV 560 is a foamed silicone elastomer loaded with silicon dioxide [7631-86-9] and iron oxide [1317-61 -9] particles, which decomposes to a similar foam of Si02, SiC, and EeSiO. Silicone resins are relatively resistant to thermal decomposition and the silicon dioxide forms a viscous Hquid when molten (50) (see... [Pg.6]

Many industrially important fluids cannot be described in simple terms. Viscoelastic fluids are prominent offenders. These fluids exhibit memory, flowing when subjected to a stress, but recovering part of their deformation when the stress is removed. Polymer melts and flour dough are typical examples. Both the shear stresses and the normal stresses depend on the history of the fluid. Even the simplest constitutive equations are complex, as exemplified by the Oldroyd expression for shear stress at low shear rates ... [Pg.96]

Welan has similar properties to xanthan gum except that it has increased viscosity at low shear rates and improved thermal stabiUty and compatibihty with calcium at alkaline pH (90). The increased thermal stabiUty has led to its use as a drilling mud viscosifter especially for high temperature weUs. The excellent compatibihty with calcium at high pH has resulted in its use in a variety of specialized cement and concrete appHcations. [Pg.437]

Solutions of rhamsan have high viscosity at low shear rates and low gum concentrations (90). The rheological properties and suspension capabiUty combined with excellent salt compatibihty, make it useful for several industrial apphcations including agricultural fertilizer suspensions, pigment suspensions, cleaners, and paints and coatings. [Pg.437]

Melt Viscosity. As shown in Tables 2 and 3, the melt viscosity of an acid copolymer increases dramatically as the fraction of neutralization is increased. The relationship for sodium ionomers is shown in Figure 4 (6). Melt viscosities for a series of sodium ionomers derived from an ethylene—3.5 mol % methacrylic acid polymer show that the increase is most pronounced at low shear rates and that the ionomers become increasingly non-Newtonian with increasing neutralization (9). The activation energy for viscous flow has been reported to be somewhat higher in ionomers than in related acidic... [Pg.406]

Apparent viscosity of a grease at low shear rates, eg, below about 10, is approximately equal to the yield stress divided by the shear rate. This... [Pg.248]

When an impeller is rotated in an agitated tank containing two immiscible Hquids, two processes take place. One consists of breakup of dispersed drops due to shearing near the impeller, and the other is coalescence of drops as they move to low shear zones. The drop size distribution (DSD) is decided when the two competing processes are in balance. During the transition, the DSD curve shifts to the left with time, as shown in Figure 18. Time required to reach the equiHbrium DSD depends on system properties and can sometimes be longer than the process time. [Pg.429]

The other models can be appHed to non-Newtonian materials where time-dependent effects are absent. This situation encompasses many technically important materials from polymer solutions to latices, pigment slurries, and polymer melts. At high shear rates most of these materials tend to a Newtonian viscosity limit. At low shear rates they tend either to a yield point or to a low shear Newtonian limiting viscosity. At intermediate shear rates, the power law or the Casson model is a useful approximation. [Pg.167]

The Cross equation assumes that a shear-thinning fluid has high and low shear-limiting viscosity (16) (eq. 4), where a and n are constants. [Pg.168]

Depending on the concentration, the solvent, and the shear rate of measurement, concentrated polymer solutions may give wide ranges of viscosity and appear to be Newtonian or non-Newtonian. This is illustrated in Eigure 10, where solutions of a styrene—butadiene—styrene block copolymer are Newtonian and viscous at low shear rates, but become shear thinning at high shear rates, dropping to relatively low viscosities beyond 10 (42). The... [Pg.171]

The limiting low shear or 2ero-shear viscosity T q of the molten polymer can be related to its weight-average molecular weight, by the same... [Pg.172]

Dispersion of a soHd or Hquid in a Hquid affects the viscosity. In many cases Newtonian flow behavior is transformed into non-Newtonian flow behavior. Shear thinning results from the abiHty of the soHd particles or Hquid droplets to come together to form network stmctures when at rest or under low shear. With increasing shear the interlinked stmcture gradually breaks down, and the resistance to flow decreases. The viscosity of a dispersed system depends on hydrodynamic interactions between particles or droplets and the Hquid, particle—particle interactions (bumping), and interparticle attractions that promote the formation of aggregates, floes, and networks. [Pg.173]

When an electric field is appHed to an ER fluid, it responds by forming fibrous or chain stmctures parallel to the appHed field. These stmctures greatly increase the viscosity of the fluid, by a factor of 10 in some cases. At low shear stress the material behaves like a soHd. The material has a yield stress, above which it will flow, but with a high viscosity. The force necessary to shear the fluid is proportional to the square of the electric field (116). [Pg.175]

Gla.ss Ca.pilla.ry Viscometers. The glass capillary viscometer is widely used to measure the viscosity of Newtonian fluids. The driving force is usually the hydrostatic head of the test Hquid. Kinematic viscosity is measured directly, and most of the viscometers are limited to low viscosity fluids, ca 0.4—16,000 mm /s. However, external pressure can be appHed to many glass viscometers to increase the range of measurement and enable the study of non-Newtonian behavior. Glass capillary viscometers are low shear stress instmments 1—15 Pa or 10—150 dyn/cm if operated by gravity only. The rate of shear can be as high as 20,000 based on a 200—800 s efflux time. [Pg.180]

Brabender Plasti-Corder C 1-102 low shear rate fair to good C. W. Brabender OHG, Duisburg,... [Pg.184]

Controlled stress viscometers are useful for determining the presence and the value of a yield stress. The stmcture can be estabUshed from creep measurements, and the elasticity from the amount of recovery after creep. The viscosity can be determined at very low shear rates, often ia a Newtonian region. This 2ero-shear viscosity, T q, is related directly to the molecular weight of polymer melts and concentrated polymer solutions. [Pg.187]

Brookfield has introduced a new digital cone—plate viscometer in two versions. The CAP 1000 is a single speed instmment (12,000 or 3, 000 with 60 Hz current) that upgrades the ICl cone—plate design (ASTM D4287). The CAP 2000 is a multispeed viscometer with a viscosity range of 1 15, 000 mPa-s. This instmment covers a wide range of shear rates (166-26, 600 ) and complements the low shear WeUs-Brookfield viscometer. [Pg.188]


See other pages where Low shear is mentioned: [Pg.2673]    [Pg.2743]    [Pg.7]    [Pg.320]    [Pg.320]    [Pg.320]    [Pg.6]    [Pg.140]    [Pg.144]    [Pg.202]    [Pg.207]    [Pg.187]    [Pg.234]    [Pg.236]    [Pg.242]    [Pg.251]    [Pg.251]    [Pg.518]    [Pg.543]    [Pg.546]    [Pg.344]    [Pg.548]    [Pg.161]    [Pg.397]    [Pg.296]    [Pg.167]    [Pg.171]    [Pg.172]    [Pg.175]    [Pg.184]    [Pg.188]   
See also in sourсe #XX -- [ Pg.31 , Pg.34 , Pg.254 ]




SEARCH



Low shear crossflow

Low shear crossflow filters

Low shear limit

Low shear rate

Low shear viscosity

Low-amplitude oscillatory shear

Low-shear Newtonian viscosity

Low-shear equipment

Low-shear granulation

Low-shear granulators

Low-shear relative viscosity

Low-shear-rate viscosity

Multi-axial deformation correspondences of shear, tension, and compression at low temperatures

Transfer in Linear Shear Flows at Low Peclet Numbers

© 2024 chempedia.info