Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium aluminum hydride with diols

Landor and coworkers12 reasoned that, in complexes of lithium aluminum hydride with diols, the equilibrium represented by the equation would lie far to the left, and that reduction of aldehydes and... [Pg.196]

Reduction of a-methyl-fi-hydroxy ketones,2 The r-butyldimethylsilyl ethers of these ketones, in which chelation is difficult, are reduced by lithium aluminum hydride with a high degree of 1,2-anri-selectivity. This reaction can therefore afford either aM ,a/iri-l,3-diols or anti,syn- 1,3-diols with high selectivity. [Pg.190]

Under usual conditions, lactones are reduced by lithium aluminum hydride to diols. A procedure for the reduction of 8-lactones with diborane in tetrahydrofiirane to cyclic acetals has been applied to the synthesis of several unusual oxasteroids. ... [Pg.834]

Both enantiomers of 4-iodo-1,2-epoxybutane are available from ( S)-malic acid as shown in Schemes 57 and 58. Reduction of THP-protected dimethyl or diethyl malate with lithium aluminum hydride gives diol 417. Immediate mesylation affords 418 in 65—70% overall yield [6,19]. Acidic hydrolysis of the THP ether furnishes the crystalline bis-mesylate 419, which upon mild base treatment cyclizes to epoxide 420 with retention of configuration. Treatment with sodium iodide gives (5)-( — )-4-iodo-1,2-epoxybutane (421). [Pg.219]

The well-known reduction of carbonyl groups to alcohols has been refined in recent studies to render the reaction more regioselective and more stereoselective Per-fluorodiketones are reduced by lithium aluminum hydride to the corresponding diols, but the use of potassium or sodium borohydride allows isolation of the ketoalcohol Similarly, a perfluoroketo acid fluonde yields diol with lithium aluminum hydnde, but the related hydroxy acid is obtainable with potassium borohydnde [i f] (equations 46 and 47)... [Pg.308]

Acylation of norephedrine (56) with the acid chloride from benzoylglycolic acid leads to the amide (57), Reduction with lithium aluminum hydride serves both to reduce the amide to the amine and to remove the protecting group by reduction (58), Cyclization by means of sulfuric acid (probably via the benzylic carbonium ion) affords phenmetrazine (59), In a related process, alkylation of ephedrine itself (60) with ethylene oxide gives the diol, 61, (The secondary nature of the amine in 60 eliminates the complication of dialkylation and thus the need to go through the amide.) Cyclization as above affords phendimetra-zine (62), - Both these agents show activity related to the parent acyclic molecule that is, the agents are CNS stimulants... [Pg.260]

Preparation of cholesta-5,7-diene-ia,3/3-diol a solution of 500 mg of the 1,4-cyclized adduct of cholesta-5,7-dien-3/3-ol-ia,2a-epoxideand 4-phenyl-1,2,4-triazoline-3,5-dione in 40 ml of tetrahydrofuran is added dropwise under agitation to a solution of 600 mg of lithium aluminum hydride in 30 ml of THF. Then, the reaction mixture liquid Is gently refluxed and boiled for 1 hour and cooled, and a saturated aqueous solution of sodium sulfate is added to the reaction mixture to decompose excessive lithium aluminum hydride. The organic solvent layer is separated and dried, and the solvent Is distilled. The residue Is purified by chromatography using a column packed with silica gel. Fractions eluted with ether-hexane (7 3 v/v) are collected, and recrystallization from the methanol gives 400 mg of cholesta-5,7-diene-la, 3/3-diol. [Pg.36]

The synthesis of the right-wing sector, compound 4, commences with the prochiral diol 26 (see Scheme 4). The latter substance is known and can be conveniently prepared in two steps from diethyl malonate via C-allylation, followed by reduction of the two ethoxy-carbonyl functions. Exposure of 26 to benzaldehyde and a catalytic amount of camphorsulfonic acid (CSA) under dehydrating conditions accomplishes the simultaneous protection of both hydroxyl groups in the form of a benzylidene acetal (see intermediate 32, Scheme 4). Interestingly, when benzylidene acetal 32 is treated with lithium aluminum hydride and aluminum trichloride (1 4) in ether at 25 °C, a Lewis acid induced reduction takes place to give... [Pg.197]

A convenient route to highly enantiomerically enriched a-alkoxy tributylslannanes 17 involves the enanlioselective reduction of acyl stannanes 16 with chiral reducing agents10. Thus reaction of acyl stannanes with lithium aluminum hydride, chirally modified by (S)-l,l -bi-naphthalene-2,2 -diol, followed by protection of the hydroxy group, lead to the desired a-alkoxy stannanes 17 in optical purities as high as 98 % ee. [Pg.123]

The crystalline material was shown to be modified sesquiterpinoid (5) containing two aldehyde functions, one of which is a,/3-unsat-urated (la). It analyzed for C13H22O2 and formed the dioxime. It readily took up oxygen on standing and was converted to the diol on treatment with lithium aluminum hydride. The bisdinitrobenzoate of this diol with osmium tetroxide yielded the tetraol, bisdinitrobenzoate, which was not readily acetylated. [Pg.111]

The preparation of Pans-1,2-cyclohexanediol by oxidation of cyclohexene with peroxyformic acid and subsequent hydrolysis of the diol monoformate has been described, and other methods for the preparation of both cis- and trans-l,2-cyclohexanediols were cited. Subsequently the trans diol has been prepared by oxidation of cyclohexene with various peroxy acids, with hydrogen peroxide and selenium dioxide, and with iodine and silver acetate by the Prevost reaction. Alternative methods for preparing the trans isomer are hydroboration of various enol derivatives of cyclohexanone and reduction of Pans-2-cyclohexen-l-ol epoxide with lithium aluminum hydride. cis-1,2-Cyclohexanediol has been prepared by cis hydroxylation of cyclohexene with various reagents or catalysts derived from osmium tetroxide, by solvolysis of Pans-2-halocyclohexanol esters in a manner similar to the Woodward-Prevost reaction, by reduction of cis-2-cyclohexen-l-ol epoxide with lithium aluminum hydride, and by oxymercuration of 2-cyclohexen-l-ol with mercury(II) trifluoro-acetate in the presence of ehloral and subsequent reduction. ... [Pg.88]

Several total syntheses of antirhine (11) and 18,19-dihydroantirhine (14) have been developed during the last decade. Wenkert et al. (136) employed a facile route to ( )-18,19-dihydroantirhine, using lactone 196 as a key building block. Base-catalyzed condensation of methyl 4-methylnicotinate (193) with methyl oxalate, followed by hydrolysis, oxidative decarboxylation with alkaline hydrogen peroxide, and final esterification, resulted in methyl 4-(methoxycar-bonylmethyl)nicotinate (194). Condensation of 194 with acetaldehyde and subsequent reduction afforded nicotinic ester derivative 195, which was reduced with lithium aluminum hydride, and the diol product obtained was oxidized with manganese dioxide to yield the desired lactone 196. Alkylation of 196 with tryptophyl bromide (197) resulted in a pyridinium salt whose catalytic reduction... [Pg.178]

Lithium aluminum hydride reduces exclusively the carboxyl group, even in an unsaturated acid with a, -conjugated double bonds. Sorbic acid afforded 92% yield of sorbic alcohol [968], and fumaric acid gave 78% yield of trans-2-butene-l,4-diol [97S]. If, however, the a, -conjugated double bond of an add is at the same time conjugated with an aromatic ring it is reduced (p. 141). [Pg.138]

Countless reductions of esters to alcohols have been accomplished using lithium aluminum hydride. One half of a mol of this hydride is needed for reduction of 1 mol of the ester. Ester or its solution in ether is added to a solution of lithium aluminum hydride in ether. The heat of reaction brings the mixture to boiling. The reaction mixture is decomposed by ice-water and acidified with mineral acid to dissolve lithium and aluminum salts. Less frequently sodium hydroxide is used for this purpose. Yields of alcohols are frequently quantitative [83,1059]. Lactones afford glycols (diols) [575]. [Pg.154]

Bromination to 4 and substitution of the bromine by an amine gives 5. Sodium borohydride reduction of the ketone to an alcohol 6 is followed by a resolution with (-)-di-/ -toluoyltartaric acid and reduction of the ester group with lithium aluminum hydride to give diol 7. Catalytic debenzylation gives albuterol, sometimes called salbutamol. [Pg.426]


See other pages where Lithium aluminum hydride with diols is mentioned: [Pg.460]    [Pg.966]    [Pg.104]    [Pg.53]    [Pg.8]    [Pg.438]    [Pg.54]    [Pg.184]    [Pg.214]    [Pg.190]    [Pg.387]    [Pg.123]    [Pg.66]    [Pg.76]    [Pg.412]    [Pg.429]    [Pg.467]    [Pg.664]    [Pg.666]    [Pg.767]    [Pg.112]    [Pg.97]    [Pg.244]    [Pg.87]    [Pg.111]    [Pg.278]    [Pg.167]    [Pg.15]    [Pg.209]    [Pg.406]    [Pg.1172]    [Pg.1414]    [Pg.352]    [Pg.293]   
See also in sourсe #XX -- [ Pg.253 ]




SEARCH



Aluminum lithium with

© 2024 chempedia.info