Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Esters lithium aluminum hydride

Section 15.3 described the reduction of carboxylic acids to primary alcohols with lithium aluminum hydride. Esters are more easily reduced than carboxylic acids. Two alcohols are formed from each ester molecule, with cleavage of the acyl group of the ester giving a primary alcohol. [Pg.838]

When treated with lithium aluminum hydride, esters are reduced to yield alcohols. [Pg.1003]

When treated with lithium aluminum hydride, esters are reduced to yield alcohols. If the desired product is an aldehyde, then DIBAH is used as a reducing agent instead of LAH. [Pg.1022]

Lithium aluminum hydride is the reagent of choice for reducing esters to alcohols O... [Pg.632]

Give the structure of an ester that will yield a mixture contain mg equimolar amounts of 1 propanol and 2 propanol on reduction with lithium aluminum hydride... [Pg.632]

The reaction of esters with Gngnard reagents and with lithium aluminum hydride both useful m the synthesis of alcohols were described earlier They are reviewed m Table 20 4 on page 848... [Pg.846]

Section 20 9 Esters react with Gngnard reagents and are reduced by lithium aluminum hydride (Table 20 4)... [Pg.876]

Trifluoroethanol was first prepared by the catalytic reduction of trifluoroacetic anhydride [407-25-0] (58). Other methods iaclude the catalytic hydrogeaatioa of trifluoroacetamide [354-38-1] (59), the lithium aluminum hydride reductioa of trifluoroacetyl chloride [354-32-5] (60) or of trifluoroacetic acid or its esters (61,62), and the acetolysis of 2-chloro-l,l,l-trifluoroethane [75-88-7] followed by hydrolysis (60). More recently, the hydrogenation of... [Pg.293]

Lithium borohydride is a more powerful reducing agent than sodium borohydride, but not as powerful as lithium aluminum hydride (Table 6). In contrast to sodium borohydride, the lithium salt, ia general, reduces esters to the corresponding primary alcohol ia refluxing ethers. An equimolar mixture of sodium or potassium borohydride and a lithium haUde can also be used for this purpose (21,22). [Pg.301]

In general, if the desired carbon—phosphoms skeleton is available in an oxidi2ed form, reduction with lithium aluminum hydride is a powerful technique for the production of primary and secondary phosphines. The method is appHcable to halophosphines, phosphonic and phosphinic acids as well as thein esters, and acid chlorides. Tertiary and secondary phosphine oxides can be reduced to the phosphines. [Pg.379]

Generally, the carboxyl group is not readily reduced. Lithium aluminum hydride is one of the few reagents that can reduce these organic acids to alcohols. The scheme involves the formation of an alkoxide, which is hydroly2ed to the alcohol. Commercially, the alternative to direct reduction involves esterification of the acid followed by the reduction of the ester. [Pg.284]

Another synthesis of the cortisol side chain from a C17-keto-steroid is shown in Figure 20. Treatment of a C3-protected steroid 3,3-ethanedyidimercapto-androst-4-ene-ll,17-dione [112743-82-5] (144) with a tnhaloacetate, 2inc, and a Lewis acid produces (145). Addition of a phenol and potassium carbonate to (145) in refluxing butanone yields the aryl vinyl ether (146). Concomitant reduction of the C20-ester and the Cll-ketone of (146) with lithium aluminum hydride forms (147). Deprotection of the C3-thioketal, followed by treatment of (148) with y /(7-chlotopetben2oic acid, produces epoxide (149). Hydrolysis of (149) under acidic conditions yields cortisol (29) (181). [Pg.434]

In most other reactions the azolecarboxylic acids and their derivatives behave as expected (cf. Scheme 52) (37CB2309), although some acid chlorides can be obtained only as hydrochlorides. Thus imidazolecarboxylic acids show the normal reactions they can be converted into hydrazides, acid halides, amides and esters, and reduced by lithium aluminum hydride to alcohols (70AHC(12)103). Again, thiazole- and isothiazole-carboxylic acid derivatives show the normal range of reactions. [Pg.92]

Properly substituted isoxazolecarboxylic acids can be converted into esters, acid halides, amides and hydrazides, and reduced by lithium aluminum hydride to alcohols. For example, 3-methoxyisoxazole-5-carboxylic acid (212) reacted with thionyl chloride in DMF to give the acid chloride (213) (74ACS(B)636). Ethyl 3-ethyl-5-methylisoxazole-4-carboxylate (214) was reduced with LAH to give 3-ethyl-4-hydroxymethyl-5-methylisoxazole (215) (7308(53)70). [Pg.52]

NaBH4, H0(CH2)20H, 40°, 18 h, 87% yield. Lithium aluminum hydride can be used to effect efficient ester cleavage if no other functional group is present that can be attacked by this strong reducing agent. ... [Pg.162]

An aiyl methane- or toluenesulfonate ester is stable to reduction with lithium aluminum hydride, to the acidic conditions used for nitration of an aromatic ring (HNO3/HOAC), and to the high temperatures (200-250°) of an Ullman reaction. Aiyl sulfonate esters, formed by reaction of a phenol with a sulfonyl chloride in pyridine or aqueous sodium hydroxide, are cleaved by warming in aqueous sodium hydroxide. ... [Pg.168]

Lithium aluminum hydride (LiAlH4) is the most powerful of the hydride reagents. It reduces acid chlorides, esters, lactones, acids, anhydrides, aldehydes, ketones and epoxides to alcohols amides, nitriles, imines and oximes to amines primary and secondary alkyl halides and toluenesulfonates to... [Pg.61]

As a general procedure, a mixture of the steroidal ketone (50 mg) and lithium aluminum deuteride (20 mg) in dry ether (5 ml, freshly distilled from lithium aluminum hydride) is heated under reflux until the reduction is complete according to thin layer chromatography test. The excess deuteride is then decomposed by the careful addition of a few drops of water and the reaction mixture is worked up by the usual procedure. For hindered ketones or esters the use of other solvents, such as tetrahydrofuran or dioxane, may be preferable to allow higher reaction temperatures. [Pg.164]

The reaction of esters with Gr-ignard reagents and with lithium aluminum hydride, both useful in the synthesis of alcohols, were described earlier. They are reviewed in Table... [Pg.846]

Reduction with lithium aluminum hydride (Section 15.3) Lithium aluminum hydride cleaves esters to yield two alcohols. [Pg.848]

LY311727 is an indole acetic acid based selective inhibitor of human non-pancreatic secretory phospholipase A2 (hnpsPLA2) under development by Lilly as a potential treatment for sepsis. The synthesis of LY311727 involved a Nenitzescu indolization reaction as a key step. The Nenitzescu condensation of quinone 4 with the p-aminoacrylate 39 was carried out in CH3NO2 to provide the desired 5-hydroxylindole 40 in 83% yield. Protection of the 5-hydroxyl moiety in indole 40 was accomplished in H2O under phase transfer conditions in 80% yield. Lithium aluminum hydride mediated reduction of the ester functional group in 41 provided the alcohol 42 in 78% yield. [Pg.150]

Catalytic hydrogenation of 57 affords 2-phenylacetamidopropionic acid (66) or its ester by solvolytic opening of the initially formed 5(4 )-oxazolone. Lithium aluminum hydride reduction gives the... [Pg.100]

A substituted benzoic acid serves as precursor for the nontricyclic antidepressant bipena-mol (175). Selective. saponification of ester 171 afford.s the half-acid 172. Reaction of the acid chloride derived from this intermediate (173) with ammonia gives the amide 174. Reduction of the last by means of lithium aluminum hydride gives bipenamol (175) [44]. [Pg.45]

Preparation of 1-Methyl Lumilysergol-10-Methyl Ether To a boiling suspension of 2 grams of lithium aluminum hydride in 50 cc of anhydrous tetrahydrofuran, a solution of 1 gram of 1-methyl lumilysergic acid-8-methyl ester-10-methyl ether in 20 cc of anhydrous tetrahydrofuran is added dropwise and the resulting solution is refluxed for a further 2 hours. [Pg.1071]


See other pages where Esters lithium aluminum hydride is mentioned: [Pg.308]    [Pg.311]    [Pg.436]    [Pg.438]    [Pg.69]    [Pg.79]    [Pg.156]    [Pg.170]    [Pg.194]    [Pg.184]    [Pg.259]    [Pg.199]    [Pg.134]    [Pg.176]    [Pg.190]    [Pg.218]    [Pg.222]    [Pg.378]    [Pg.387]    [Pg.123]    [Pg.249]   
See also in sourсe #XX -- [ Pg.245 , Pg.267 ]




SEARCH



Aluminum hydrides, 155. esters

Esters (cont by lithium aluminum hydride

Esters alcohol synthesis, lithium aluminum hydride

Esters hydride

Lithium aluminum hydride alcohol synthesis from esters

Lithium aluminum hydride reactions with esters

Lithium aluminum hydride reduction of ester

Lithium aluminum hydride, acids Esters

Lithium aluminum hydride, reducing esters

Lithium aluminum hydride, reduction esters

Lithium esters

Reaction of Esters with Lithium Aluminum Hydride

Sulfonic esters reaction with lithium aluminum hydride

© 2024 chempedia.info