Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lithium aluminum hydride carboxylic acids reduction

Lithium aluminum hydride reduction (Sec tion 15 3) Carboxylic acids are reduced to primary alcohols by the powerful reducing agent lithium aluminum hydride... [Pg.810]

Generally, the carboxyl group is not readily reduced. Lithium aluminum hydride is one of the few reagents that can reduce these organic acids to alcohols. The scheme involves the formation of an alkoxide, which is hydroly2ed to the alcohol. Commercially, the alternative to direct reduction involves esterification of the acid followed by the reduction of the ester. [Pg.284]

The Rosenmund reduction is usually applied for the conversion of a carboxylic acid into the corresponding aldehyde via the acyl chloride. Alternatively a carboxylic acid may be reduced with lithium aluminum hydride to the alcohol, which in turn may then be oxidized to the aldehyde. Both routes require the preparation of an intermediate product and each route may have its advantages over the other, depending on substrate structure. [Pg.245]

Compared to the lithium enolates of l and 5, the higher stereoselectivity obtained by the Mukaiyama variation is, in general, accompanied by reduced chemical yields. The chiral alcoholic moieties of the esters 3 and 7 can be removed either by reduction with lithium aluminum hydride (after protection of the earbinol group) or by aqueous alkaline hydrolysis with lithium hydroxide to afford the corresponding carboxylic acid. In both cases, the chiral auxiliary reagent can be recovered. [Pg.478]

In a more general sense, this reduction method provides a convenient pathway for converting an aromatic carboxyl group to a methyl group (see Table I).7 Previously, this transformation has been achieved by reduction of the acid to the alcohol with lithium aluminum hydride, conversion of the alcohol to the tosylate, and a second reduction either with lithium aluminum hydride [Aluminate(l —), tetrahydro, lithium,... [Pg.86]

The same nonpolar conformation can be achieved by conversion to bicyclic structures. 1,4-Cyclo-addition of ethylene to anthracene-9-carboxylic acid gives acid 68. Successive conversion to the N-methylamide, via the acid chloride, followed by reduction with lithium aluminum hydride produced... [Pg.220]

Reduction of carboxylic acids are the most difficult, but they can be accomplished with the powerful reducing agent lithium aluminum hydride (LiAlH4, abbreviated LAH). [Pg.463]

Free acids require still an additional hydride equivalent because their acidic hydrogens combine with one hydride ion of lithium aluminum hydride forming acyloxy trihydroaluminate ion. Complete reduction of free carboxylic acids to alcohols requires 0.75 mol of lithium aluminum hydride. The same amount is needed for reduction of monosubstituted amides to secondary amines. Unsubstituted amides require one full mole of lithium aluminum hydride since one half reacts with two acidic hydrogens while the second half achieves the reduction. [Pg.18]

The reduction of free acids to alcohols became practical only after the advent of complex hydrides. Lithium aluminum hydride reduces carboxylic acids to alcohols in ether solution very rapidly in an exothermic reaction. Because of the presence of acidic hydrogen in the carboxylic acid an additional equivalent of lithium aluminum hydride is needed beyond the amount required for the reduction. The stoichiometric ratio is 4 mol of the acid to 3 mol of lithium aluminum hydride (Equation 12, p. 18). Trimethylacetic add was reduced to neopentyl alcohol in 92% yield, and stearic acid to 1-octadecanol in 91% yield. Dicarboxylic sebacic acid was reduced to 1,10-decanedioI even if less than the needed amount of lithiiun aluminum hydride was used [968]. [Pg.137]

Reduction of aromatic carboxylic acids to alcohols can be achieved by hydrides and complex hydrides, e.g. lithium aluminum hydride 968], sodium aluminum hydride [55] and sodium bis 2-methoxyethoxy)aluminum hydride [544, 969, 970], and with borane (diborane) [976] prepared from sodium borohydride and boron trifluoride etherate [971, 977] or aluminum chloride [755, 975] in diglyme. Sodium borohydride alone does not reduce free carboxylic acids. Anthranilic acid was reduced to the corresponding alcohol by electroreduction in sulfuric acid at 20-30° in 69-78% yield [979],... [Pg.139]

The reduction of carboxylic acids or esters requires very powerful reducing agents such as lithium aluminum hydride (LiAlH,) or sodium (Na) metal. Aldehydes and ketones are easier to reduce, so they can use sodium borohy-dride (NaBH,j). Examples of these reductions are shown in Figure 3-13. [Pg.38]

Diclofenac Diclofenac, 2-[(2,6-dichlorophenyl)-amino]-phenylacetic acid (3.2.42), is synthesized from 2-chIorobenzoic acid and 2,6-dichloroaniline. The reaction of these in the presence of sodium hydroxide and copper gives iV-(2,6-dichlorophenyl)anthranyIic acid (3.2.38), the carboxylic group of which undergoes reduction by lithium aluminum hydride. The resulting 2-[(2,6-dicholorphenyl)-amino]-benzyl alcohol (3.2.39) undergoes further chlorination by thionyl chloride into 2-[(2,6-dichlorophenyl)-amino]-ben-zylchloride (3.2.40) and further, upon reaction with sodium cyanide converts into... [Pg.46]

A carboxylic acid group may be introduced into the 2-position of dibenzofuran by Friedel-Crafts reaction with 2,2-dichloro-l,3-benzodioxole (catechol dichloromethylene ether) and hydrolysis of the resultant ester. Similarly, reaction with methylphenylcarbamoyl chloride produces the 2-(N-methyl-yV-phenylcarboxamide) or the 2,8-disubstituted derivative under more stringent conditions. Controlled reduction of these amides with lithium aluminum hydride supplies the corresponding aldehydes. ... [Pg.66]

The checkers obtained cyclopropylcarbinol from the Aldrich Chemical Company, Inc. It can be readily prepared by the reduction of cyclopropane-carboxylic acid with lithium aluminum hydride. ... [Pg.52]

An important example of this type of reaction is the formation of esters, which was discussed previously in connection with the reactions of alcohols in Section 15-4D. Similar addition-elimination mechanisms occur in many reactions at the carbonyl groups of acid derivatives. A less obvious example of addition to carboxyl groups involves hydride ion (H 0) and takes place in lithium aluminum hydride reduction of carboxylic acids (Sections 16-4E and 18-3C). [Pg.806]

Generally, carboxylic acids are difficult to reduce either by catalytic hydrogenation or by sodium and alcohol. Nonetheless, reduction to primary alcohols proceeds smoothly with lithium aluminum hydride, LiAlH4 ... [Pg.809]

The first step in lithium aluminum hydride reduction of carboxylic acids is formation of a complex aluminum salt of the acid and hydrogen ... [Pg.810]

Reduction then proceeds by successive transfers of hydride ion, H e, from aluminum to carbon. The first such transfer reduces the acid salt to the oxidation level of the aldehyde reduction does not stop at this point, however, but continues rapidly to the alcohol. Insufficient information is available to permit very specific structures to be written for the intermediates in the lithium aluminum hydride reduction of carboxylic acids. However, the product is a complex aluminum alkoxide, from which the alcohol is freed by hydrolysis ... [Pg.810]

Hydroxjrmethylbenzof Jthiophenes are most conveniently prepared by reduction with lithium aluminum hydride of the corresponding carboxylic acid78,100 S37 485,486,521,528,540 or ester.77,87,336,337, 52i, 526 Lesg frequently, they are prepared by reduction of the corresponding aldehyde 100,487 or acid chloride,618 with sodium boro-hydride, or, in the case of 2-hydroxymethylbenzo[6]thiophenes, by reaction of the 2-lithium derivative with formaldehyde.90,628 3-Hydroxymethylbenzo[6]thiophene has been prepared from the corresponding aldehyde by means of a crossed Cannizzaro reaction... [Pg.312]

Attempts to synthesize C-terminal peptide aldehydes using other reductive techniques are less successful. 24"29 The reduction of a-amino acid esters with sodium amalgam and lithium aluminum hydride reduction of tosylated a-aminoacyldimethylpyrazoles resulted in poor yields. 26,29 The Rosemond reduction of TV-phthaloyl amino acid chlorides is inconvenient because the aldehyde is sensitive to hydrazine hydrate that is used to remove the phthaloyl group. 27 28 jV -Z-Protected a-aminoacylimidazoles, which are reduced to the corresponding aldehydes using lithium aluminum hydride, are extremely moisture sensitive and readily decomposed. 25 The catalytic reduction of mixed carbonic/carboxylic acid anhydrides, prepared from acylated a-amino acids, leads to poor reproducibility and low yields. 24 The major problems associated with these techniques are overreduction, racemization, and poor yields. [Pg.200]

Reduction of amides is an important preparative method for the synthesis of primary amines. Reducing agents used for this purpose include lithium aluminum hydride, sodium borohydride, triphenyl-phosphine (Staudinger reduction), and thiols. In the present case it is important to consider the compatibility of the reduction system with the carboxylic and methanesulfonic acid functions. Platinum and palladium arc often used for catalytic reduction. [Pg.37]

Alcohols are at a fairly low oxidation level compared to other oxygen-containing functional groups and consequently are readily prepared by reduction. Large numbers of reductive methods have been reported for the preparation of alcohols. Carboxylic acids and esters react vigorously with lithium aluminum hydride (LAH) to produce primary alcohols. Carboxylic acids, but not esters, are also reduced easily by borane, which is die only reducing agent diat reacts faster widi carboxylic acids dian widi esters or odier acid derivatives. [Pg.199]


See other pages where Lithium aluminum hydride carboxylic acids reduction is mentioned: [Pg.173]    [Pg.269]    [Pg.18]    [Pg.194]    [Pg.412]    [Pg.492]    [Pg.32]    [Pg.244]    [Pg.95]    [Pg.87]    [Pg.141]    [Pg.141]    [Pg.148]    [Pg.1295]    [Pg.340]    [Pg.112]    [Pg.236]    [Pg.324]    [Pg.302]    [Pg.313]    [Pg.130]    [Pg.370]    [Pg.373]    [Pg.377]    [Pg.522]   
See also in sourсe #XX -- [ Pg.860 ]




SEARCH



Aluminum carboxylates

Aluminum reduction

Carboxylation, reductive

Carboxylic acid reductive

Carboxylic acids reduction

Carboxylic reduction

Hydride acidity

Lithium acids

Lithium aluminum hydride carboxylic acids

Lithium aluminum hydride, reduction

Lithium carboxylate

Lithium carboxylates

Lithium carboxylic acid reduction

Lithium carboxylic acids

Lithium hydride reduction

Lithium reductions

Reduction aluminum hydride

Reduction of Carboxylic Acids by Lithium Aluminum Hydride

© 2024 chempedia.info