Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid viscosities variation with temperature

A different approach was made by Dyre et al. (1996) to account for the experimental viscosity variations with temperature as an alternative to VTF and AG models. They considered the flow in viscous liquids to arise from sudden events involving motion and reorganization of several molecules. From the viewpoint of mechanism, the energy required for such flow is minimized if the surrounding liquid is shoved aside to create the necessary volume for rearrangement. This volume is fundamentally different from the volume of the free volume theory and is, in principle, an activation volume. The free energy involved may be written as... [Pg.118]

The liquid viscosity varies with temperature = ix((T) and can be included in the analysis. However, when i, is evaluated at the average film temperature, this variation can be represented with sufficient accuracy. [Pg.695]

The viscosity of a hydrocarbon mixture, as with all liquids, decreases when the temperature increases. The way in which lubricant viscosities vary with temperature is quite complex and, in fact, charts proposed by ASTM D 341 or by Groff (1961) (Figure 6.1) are used that provide a method to find the viscosity index for any lubricant system. Remember that a high viscosity index corresponds to small variation of viscosity between the low and high... [Pg.354]

The effect of large changes in pressure at constant temperature on the viscosity of various hydrocarbons is shown in Figure 3. There we see that the logarithm of the viscosity of liquid hydrocarbons and hydrocarbon mixtures increases almost linearly with increasing pressure. Alternatively, viscosity can be considered to be a function of density rather than pressure, and this is used in several of the models discussed later. The kinematic viscosity shows similar trends with respect to these variables mentioned above, however its variation with temperature is significantly more linear than dynamic viscosity so that the former is somewhat easier to correlate than the latter. Consequently, some correlations have been developed exclusively for the kinematic viscosity, as will be discussed later. [Pg.4]

Fig. 6.2 The variation of rotational viscosity (ye) with temperature difference (T — T ) for polymer-stabilized ferroelectric liquid crystal and pure ferroelectric liquid crystal. The units are taken arbitrarily... Fig. 6.2 The variation of rotational viscosity (ye) with temperature difference (T — T ) for polymer-stabilized ferroelectric liquid crystal and pure ferroelectric liquid crystal. The units are taken arbitrarily...
With regard to the liqiiid-phase mass-transfer coefficient, Whitney and Vivian found that the effect of temperature upon coiild be explained entirely by variations in the liquid-phase viscosity and diffusion coefficient with temperature. Similarly, the oxygen-desorption data of Sherwood and Holloway [Trans. Am. Jnst. Chem. Eng., 36, 39 (1940)] show that the influence of temperature upon Hl can be explained by the effects of temperature upon the liquid-phase viscosity and diffusion coefficients. [Pg.610]

The physical properties of spray-dried materials are subject to considerable variation, depending on the direction of flow of the inlet gas and its temperature, the degree and uniformity of atomization, the solids content of the feed, the temperature of the feed, and the degree of aeration of the feed. The properties of the product usually of greatest interest are (1) particle size, (2) bulk density, and (3) dustiness. The particle size is a function of atomizer-operating conditions and also of the solids content, liquid viscosity, liquid density, and feed rate. In general, particle size increases with solids content, viscosity, density, and feed rate. [Pg.1233]

The reported densities of ionic liquids vary between 1.12 g cm for [(n-QHi7)(C4H9)3N][(CF3S02)2N] and 2.4 g cm for a 34-66 mol% [(CH3)3S]Br/AlBr3 ionic liquid [21, 23]. The densities of ionic liquid appear to be the physical property least sensitive to variations in temperature. For example, a 5 degree change in temperature from 298 to 303 K results in only a 0.3 % decrease in the density for a 50.0 50.0 mol % [EMIM]C1/A1C13 [17]. In addition, the impact of impurities appears to be far less dramatic than in the case of viscosity. Recent work indicates that the densities of ionic liquids vary linearly with wt. % of impurities. For example, 20 wt. % water (75 mol %) in [BMIM][BF4] results in only a 4 % decrease in density [33]. [Pg.66]

If one follows the solution viscosity in concentrated sulfuric acid with increasing polymer concentration, then one observes first a rise, afterwards, however, an abrupt decrease (about 5 to 15%, depending on the type of polymers and the experimental conditions). This transition is identical with the transformation of an optical isotropic to an optical anisotropic liquid crystalline solution with nematic behavior. Such solutions in the state of rest are weakly clouded and become opalescent when they are stirred they show birefringence, i.e., they depolarize linear polarized light. The two phases, formed at the critical concentration, can be separated by centrifugation to an isotropic and an anisotropic phase. A high amount of anisotropic phase is desirable for the fiber properties. This can be obtained by variation of the molecular weight, the solvent, the temperature, and the polymer concentration. [Pg.288]

In addition to temperature, the viscosity of these mixtures can change dramatically over time, or even with applied shear. Liquids or solutions whose viscosity changes with time or shear rate are said to be non-Newtonian, that is, viscosity can no longer be considered a proportionality constant between the shear stress and the shear rate. In solutions containing large molecules and suspensions contain nonattracting aniso-metric particles, flow can orient the molecules or particles. This orientation reduces the resistance to shear, and the stress required to increase the shear rate diminishes with increasing shear rate. This behavior is often described by an empirical power law equation that is simply a variation of Eq. (4.3), and the fluid is said to be a power law fluid ... [Pg.296]

As is to be expected the equilibrium between the two above-mentioned forms of liquid sulphur affects other properties in addition to the colour and the viscosity. Thus, the electrical conductivity 5 and the surface tension6 of molten sulphur exhibit abnormal variation with alteration in temperature also the solubility curves for A-sulphur and p-sulphur in high-boiling solvents such as triphenylmethane are quite distinct, the solubility of the former increasing and that of the latter decreasing with rise of temperature the respective coefficients of expansion are also quite independent.7 The reactivities of the two forms towards rubber arc practically equal.8... [Pg.19]

Viscosities for liquids and gases vary with temperature, although in functionally different ways. Except for very high pressures, viscosity varies weakly with pressure, and the pressure dependence is often neglected. These variations are discussed later in the chapter. [Pg.489]

If the species X and B are to react on every encounter, it is obvious that no significant activation energy can be required. This does not imply that the experimental activation energy (EA) will be zero, even for the diffusion-controlled step, because of the temperature dependence of the viscosity of the medium. The variation of the viscosity of liquids with temperature normally follows equation (5) where b and B are constants. Even where this equation is not well obeyed (e.g. water), it is still convenient to define a mean value of B for a particular range of temperature. From (4) and (5), the variation of ken with temperature is as shown in (6). When this expression for ken is substituted in... [Pg.8]

An ionic liquid (IL) , or classically a room-temperature molten salt , is an interesting series of materials being investigated in a drive to find a novel electrolyte system for electrochemical devices. ELs contain anions and cations, and they show a liquid nature at room temperature without the use of any solvents. The combination of anionic and cationic species in ILs gives them a lot of variations in properties, such as viscosity, conductivity, and electrochemical stability. These properties, along with the nonvolatile and flame-resistant nature of ILs, makes this material especially desirable for lithium-ion batteries, whose thermal instability has not yet been resolved despite investigations for a long time. In this chapter we discuss the efforts made for battery application of ILs. [Pg.173]


See other pages where Liquid viscosities variation with temperature is mentioned: [Pg.113]    [Pg.83]    [Pg.245]    [Pg.2000]    [Pg.264]    [Pg.406]    [Pg.553]    [Pg.201]    [Pg.210]    [Pg.296]    [Pg.78]    [Pg.115]    [Pg.34]    [Pg.429]    [Pg.264]    [Pg.337]    [Pg.161]    [Pg.467]    [Pg.101]    [Pg.117]    [Pg.48]    [Pg.61]    [Pg.4]    [Pg.344]    [Pg.1758]    [Pg.455]    [Pg.235]    [Pg.415]   
See also in sourсe #XX -- [ Pg.437 ]




SEARCH



Liquid temperature

Liquid viscosities

Temperature variations

Variation with

Viscosity variation with temperature

© 2024 chempedia.info