Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid alloys general characteristics

The situation in the solid state is generally more complex. Several examples of binary systems were seen in which, in the solid state, a number of phases (intermediate and terminal) are formed. See for instance Figs 2.18-2.21. Both stoichiometric phases (compounds) and variable composition phases (solid solutions) may be considered and, as for their structures, both fully ordered or more or less completely disordered phases. This variety of types is characteristic for the solid alloys. After a few comments on liquid alloys, particular attention will therefore be dedicated in the following paragraphs to the description and classification of solid intermetallic phases. [Pg.81]

General characteristics of alloys such as those presented in Fig. 3.3 have been discussed by Fassler and Hoffmann (1999) in a paper dedicated to valence compounds at the border of intermetallics (alkali and alkaline earth metal stannides and plumbides) . Examples showing gradual transition from valence compounds to intermetallic phases and new possibilities for structural mechanisms and bonding for Sn and Pb have been discussed. Structural relationships with Zintl phases (see Chapter 4) containing discrete and linked polyhedra have been considered. See 3.12 for a few remarks on the relationships between liquid and amorphous glassy alloys. [Pg.85]

Another characteristic point is the special attention that in intermetallic science, as in several fields of chemistry, needs to be dedicated to the structural aspects and to the description of the phases. The structure of intermetallic alloys in their different states, liquid, amorphous (glassy), quasi-crystalline and fully, three-dimensionally (3D) periodic crystalline are closely related to the different properties shown by these substances. Two chapters are therefore dedicated to selected aspects of intermetallic structural chemistry. Particular attention is dedicated to the solid state, in which a very large variety of properties and structures can be found. Solid intermetallic phases, generally non-molecular by nature, are characterized by their 3D crystal (or quasicrystal) structure. A great many crystal structures (often complex or very complex) have been elucidated, and intermetallic crystallochemistry is a fundamental topic of reference. A great number of papers have been published containing results obtained by powder and single crystal X-ray diffractometry and by neutron and electron diffraction methods. A characteristic nomenclature and several symbols and representations have been developed for the description, classification and identification of these phases. [Pg.2]

These blends can take a number of different forms. The added resin may be reacted with the epoxy resin, or it may be included as an unreacted modifier. The modifier may be blended into a continuous phase with the epoxy resin (epoxy alloys) or precipitated out as a discrete phase within the epoxy resin matrix (as is generally done in the case of toughening modifiers). Epoxy hybrid adhesives are often used as film (supported and unsupported) or tape because of the ease with which formulated systems can be dissolved into solvent and applied to a carrier or deposited as a freestanding film. Some systems, notably epoxyurethanes and epoxy-poly sulfides, can be employed as a liquid or paste formulation because of the low-viscosity characteristics of the components. [Pg.123]


See other pages where Liquid alloys general characteristics is mentioned: [Pg.436]    [Pg.517]    [Pg.307]    [Pg.348]    [Pg.20]    [Pg.348]    [Pg.302]    [Pg.35]    [Pg.210]    [Pg.299]    [Pg.444]    [Pg.115]    [Pg.62]    [Pg.145]    [Pg.380]    [Pg.457]    [Pg.240]    [Pg.48]    [Pg.24]    [Pg.184]    [Pg.457]    [Pg.420]    [Pg.109]    [Pg.239]    [Pg.779]   
See also in sourсe #XX -- [ Pg.85 , Pg.86 ]




SEARCH



General characteristics

Liquid , generally

Liquid alloys

Liquids characteristics

© 2024 chempedia.info