Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear free energy relationships substrate oxidation

A comparison of the rate constants for the [Cun(FLA)(IDPA)]+-cata-lyzed autoxidation of 4/-substituted derivatives of flavonol revealed a linear free energy relationship (Hammett) between the rate constants and the electronic effects of the para-substituents of the substrate (128). The logarithm of the rate constants linearly decreased with increasing Hammett o values, i.e. a higher electron density on the copper center yields a faster oxidation rate. [Pg.443]

The oxidation of meta- and para-substituted anilines with imidazolium fluorochro-mate (IFC)18 and nicotinium dichromate (NDC),19 in several organic solvents, in the presence of p-toluenesulfonic acid (TsOH) is first order in the oxidant and TsOH and is zero order with respect to substrate. A correlation of rate data in different solvents with Kamlet-Taft solvatochromic parameters suggests that the specific solute-solvent interactions play a major role in governing the reactivity, and the observed solvent effects have been explained on the basis of solute-solvent complexation. The oxidation rates with NDC exhibited negative reaction constants, while the oxidation with IFC did not correlate well with any linear free energy relationships. [Pg.93]

The [Ruv(N40)(0)]2+ complex is shown to oxidize a variety of organic substrates such as alcohols, alkenes, THF, and saturated hydrocarbons, which follows a second-order kinetics with rate = MRu(V)][substrate] (142). The oxidation reaction is accompanied by a concomitant reduction of [Ruv(N40)(0)]2+ to [RuIII(N40)(0H2)]2+. The mechanism of C—H bond oxidation by this Ru(V) complex has also been investigated. The C—H bond kinetic isotope effects for the oxidation of cyclohexane, tetrahydrofuran, propan-2-ol, and benzyl alcohol are 5.3 0.6, 6.0 0.7, 5.3 0.5, and 5.9 0.5, respectively. A mechanism involving a linear [Ru=0"H"-R] transition state has been suggested for the oxidation of C—H bonds. Since a linear free-energy relationship between log(rate constant) and the ionization potential of alcohols is observed, facilitation by charge transfer from the C—H bond to the Ru=0 moiety is suggested for the oxidation. [Pg.262]


See other pages where Linear free energy relationships substrate oxidation is mentioned: [Pg.444]    [Pg.97]    [Pg.397]    [Pg.220]    [Pg.26]    [Pg.174]    [Pg.330]   
See also in sourсe #XX -- [ Pg.427 ]




SEARCH



Energy relationships

Free energy relationships

Linear Free Energy Relationships

Linear energy relationships

Linear relationship

Linear substrates

Linearized relationship

Oxidation relationship

Oxide substrates

Oxide, free

Substrate oxidations

© 2024 chempedia.info